Numerical Simulations of White Dwarf Tidal Disruption Events

Autores/as

  • Sinead Humphrey University of Wisconsin-Milwaukee

DOI:

https://doi.org/10.17307/wsc.v1i1.371

Palabras clave:

White Dwarfs, Black Holes, Numerical Simulations, Moving-Mesh Hydrodynamics

Resumen

Numerical simulations of white dwarf tidal disruption events are performed using the 3-D moving-mesh hydrody- namic code, MANGA. In order to study the effect of nuclear burning on these events, we add a nuclear burning module to MANGA. Here, we present preliminary results from two simulations of white dwarf tidal disruption events with nuclear burning. We see no nuclear burning for shallow penetration (β = 2); however, we see significant nuclear burning for deep penetration (β = 5). Significant nuclear burning that produces radioactive elements will likely affect the light curve and observability of these events.

Citas

P. Chang and Z. Etienne. General Relativistic Hydrodynamics on a Moving-mesh I: Static Spacetimes. arXiv e-prints, art. arXiv:2002.09613, Feb. 2020.

P. Chang, J. Wadsley, and T. R. Quinn. A moving-mesh hydrodynamic solver for ChaNGa. MNRAS, 471:3577–3589, Nov. 2017. doi: 10.1093/mnras/stx1809.

P. Chang, S. W. Davis, and Y.-F. Jiang. Time-dependent radiation hydrodynamics on a moving mesh. MNRAS, 493 (4):5397–5407, Apr. 2020. doi: 10.1093/mnras/staa573.

K. Maguire, M. Eracleous, P. G. Jonker, M. MacLeod, and S. Rosswog. Tidal Disruptions of White Dwarfs: Theoret- ical Models and Observational Prospects. SSR, 216(3):39, Mar. 2020. doi: 10.1007/s11214-020-00661-2.

B. Paxton. Modules for Experiments in Stellar Astrophysics (MESA). Zenodo, Sept. 2019.

B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes. Modules for Experiments in Stellar Astro-

physics (MESA). ApJS, 192:3, Jan. 2011. doi: 10.1088/0067-0049/192/1/3.

B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F. Brown, A. Dotter, C. Mankovich, M. H. Montgomery, D. Stello, F. X. Timmes, and R. Townsend. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. ApJS, 208:4, Sept. 2013. doi: 10.1088/0067-0049/208/1/4.

B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, R. H. D. Townsend, D. M. Townsley, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. ApJS, 220:15, Sept. 2015. doi: 10.1088/0067-0049/220/1/15.

B. Paxton, J. Schwab, E. B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J. A. Goldberg, P. Marchant, E. Sorokina, A. Thoul, R. H. D. Townsend, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions. ApJS, 234(2):34, Feb. 2018. doi: 10.3847/1538-4365/aaa5a8.

L. J. Prust and P. Chang. Common envelope evolution on a moving mesh. MNRAS, 486(4):5809–5818, July 2019. doi: 10.1093/mnras/stz1219.

S. Rosswog, E. Ramirez-Ruiz, and W. R. Hix. Tidal Disruption and Ignition of White Dwarfs by Moderately Massive Black Holes. ApJ, 695(1):404–419, Apr. 2009. doi: 10.1088/0004-637X/695/1/404.

V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. MNRAS, 401:791–851, Jan. 2010. doi: 10.1111/j.1365-2966.2009.15715.x.

F. X. Timmes, R. D. Hoffman, and S. E. Woosley. An Inexpensive Nuclear Energy Generation Network for Stellar Hydrodynamics. ApJS, 129(1):377–398, July 2000. doi: 10.1086/313407.

M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Norman. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. ApJS, 192(1):9, Jan. 2011. doi: 10.1088/0067-0049/192/1/9.

Descargas

Publicado

2023-10-12

Cómo citar

Humphrey, S. (2023). Numerical Simulations of White Dwarf Tidal Disruption Events. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.371

Número

Sección

Astronomy and Cosmology