Developing Computationally Efficient Property Calculations for High-Pressure, Multi-Component Droplet Vaporization

Autores/as

  • Michael Patrick Hayes Marquette University

DOI:

https://doi.org/10.17307/wsc.v1i1.323

Palabras clave:

Combustion, Droplet, High-pressure

Resumen

The combustion of liquid fuels such as gasoline, diesel, and jet fuels often occurs at elevated pressures. The complex composition of these hydrocarbon fuels makes modeling them a time-consuming process using traditional discrete component models (DCMs); continuous thermodynamic models (CTMs) are more computationally efficient. This paper utilizes high-pressure property calculations to improve upon the accuracy of an existing CTM in depicting the vaporization of liquid fuel droplets at high pressures. Increased model fidelity in replicating DCM results is accomplished by depicting these properties as functions of temperature, pressure, and a chosen distribution variable. This addition leads to high simulation accuracy at elevated pressures while maintaining the computational efficiency of CTMs.

Citas

Cooney, A. Y., & Singer, S. L. (2019). A hybrid droplet vaporization-chemical surrogate approach for emulating vaporization, physical properties, and chemical combustion behavior of multicomponent fuels. Proceedings of the Combustion Institute, 37(3), 3229-3236. doi:10.1016/j.proci.2018.07.071.

Ely, J. F., & Hanley, H. J. M. (1983). Prediction of transport properties. 2. thermal conductivity of pure fluids and mixtures. Industrial & Engineering Chemistry Fundamentals, 22(1), 90-97. doi:10.1021/i100009a016.

Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). new method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry, 58(5), 18-27. doi:10.1021/ie50677a007.

Jossi, J. A., Stiel, L. I., & Thodos, G. (1962). The viscosity of pure substances in the dense gaseous and liquid phases. AIChE Journal, 8(1), 59-63. doi:10.1002/aic.690080116.

Latini, G., & Baroncini, C., (1983). Effects of temperature and pressure on organic liquid thermal conductivity. High Temperatures-High Pressures, 15, 407-411.

Lovestead, T. M., Burger, J. L., Schneider, N., & Bruno, T. J. (2016). Comprehensive assessment of composition and thermochemical variability by high resolution GC/QToF-MS and the advanced distillation-curve method as a basis of comparison for reference fuel development. Energy & Fuels, 30(12), 10029-10044. doi:10.1021/acs.energyfuels.6b01837.

Lucas, K. (1981). Die druckabhängigkeit der viskosität von flüssigkeiten – eine einfache abschätzung. Chemie Ingenieur Technik, 53(12), 959-960. doi:10.1002/cite.330531209.

Nomura, H., Ujiie, Y., Rath, H. J., Sato, J., & Kono, M. (1996). Experimental study on high-pressure droplet evaporation using microgravity conditions. Symposium (International) on Combustion, 26(1), 1267-1273. doi:10.1016/S0082-0784(96)80344-4

Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids (Fourth ed.). New York: McGraw-Hill.

Tamim, J., & Hallett, W. L. H. (1995). A continuous thermodynamics model for multicomponent droplet vaporization. Chemical Engineering Science, 50(18), 2933-2942. doi:10.1016/0009-2509(95)00131-N

Takahashi, S. (1974). Preparation of a generalized chart of the diffusion coefficients of gases at high pressures. Journal of Chemical Engineering of Japan, 7(6), 417-420.

Torres, D. J., O'Rourke, P. J., & Amsden, A. A. (2003). A discrete multicomponent fuel model. Atomization and Sprays, 13(2-3), 42. doi:10.1615/AtomizSpr.v13.i23.10

Yan, C., & Aggarwal, S. K. (2006). A high-pressure droplet model for spray simulations. Journal of Engineering for Gas Turbines and Power, 128(3), 482. doi:10.1115/1.1915390

Yaws, Carl L.. (2012; 2013; 2014). Yaws' Critical Property Data for Chemical Engineers and Chemists. Knovel. Retrieved from https://app.knovel.com/hotlink/toc/id:kpYCPDCECD/yaws-critical-property/yaws-critical-property.

Zhang, L., & Kong, S. (2011). High-pressure vaporization modeling of multi-component petroleum–biofuel mixtures under engine conditions. Combustion and Flame, 158(9), 1705-1717. doi:10.1016/j.combustflame.2011.01.002.

Descargas

Publicado

2022-02-25

Cómo citar

Hayes, M. P. (2022). Developing Computationally Efficient Property Calculations for High-Pressure, Multi-Component Droplet Vaporization. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.323

Número

Sección

Physics and Engineering