Urban Emissions and Regional Air Quality in India
DOI:
https://doi.org/10.17307/wsc.v1i1.169Palabras clave:
Air quality, India, OMI, CMAQResumen
Satellite observations from the Ozone Monitoring Instrument are used in support of model evaluation of seasonal average results from the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) model. Model evaluation was conducted with the purpose of identifying regional biases in model output compared to tropospheric columns. Comparison with tropospheric column NO2, an anthropogenic indicator, reveal that there are uncertainties regarding the emissions inventory input to CMAQ. Results have implications for developing accurate model inputs to produce accurate model output for relevant health impact assessments, which are increasingly important with increasing population, urbanization, and pollution in the region.
Citas
Allen, D. J., et al.(2012), Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model, Atmos. Chem. Phys., 12(4), 1737–1758, doi:10.5194/acp-12-1737-2012.
Behera, S. N., and M. Sharma (2010), Reconstructing Primary and Secondary Components of PM 2.5 Composition for an Urban Atmosphere, Aerosol Sci. Technol., 44(11), 983–992, doi:10.1080/02786826.2010.504245.
Bell, R. G., et al. (2004), Clearing the Air: How Delhi Broke the Logjam on Air Quality Reforms, Environ. Sci. Policy Sustain. Dev., doi:10.1080/00139150409604376.
Bergin, M. H., et al. (2015), The discoloration of the Taj Mahal due to particulate carbon and dust deposition, Environ. Sci. Technol., 49(2), 808–812, doi:10.1021/es504005q.
Byun, D., and K. L. Schere (2006), Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59(2), 51, doi:10.1115/1.2128636.
Carlton, A. G., and K. R. Baker (2011), Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions., Env. Sci. Tech., 45(10), 4438–45, doi:10.1021/es200050x.
Cecil, D. J., D. E. Buechler, and R. J. Blakeslee (2014), Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135–136, 404–414, doi:10.1016/j.atmosres.2012.06.028.
Chowdhury, Z., et al. (2007), Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities, J. Geo. Res. Atmos., 112(15), doi:10.1029/2007JD008386.
Dee, D. P. et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553–597, doi:10.1002/qj.828.
Dong, X., et al. (2015), Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia, Atmos. Chem. Phys. Discuss., 15(24), 35591–35643, doi:10.5194/acpd-15-35591-2015.
Duncan, B. N., et al. (2015), A space-based high-resolution view of notable changes in urban NOx pollution around the world (2005-2014), J. Geophys. Res. Atmos., 121, 976–996, doi:10.1002/2014JD022963. Received.
ENVIS Centre on Control of Pollution (2016), Air Quality: National Air Quaity Monitoring Programme (NAMP), Available from: http://cpcbenvis.nic.in/air_pollution_main.html.
Ghosh, S. et al. (2014), Chemical characterization of summertime dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions, Aerosol Air Qual. Res., 14(3), 879–891, doi:10.4209/aaqr.2013.07.0240.
Ghude, S. D., et al. (2013), Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRF-Chem simulations, Geophys. Res. Lett., 40(x), 423–428, doi:10.1029/2012GL053926.
Ghude, S. D., et al. (2016), Premature mortality in India due to PM2.5 and ozone exposure, Geophys. Res. Lett., 43, 4650–4658, doi:10.1002/2013GL058740.Received.
Grell, G. A., and D. Devenyi (2002), A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophyiscal Res. Lett., 29(14), 10–13.
Guttikunda, S. K., G. Calori (2013), A GIS based emissions inventory at 1km×1km spatial resolution for air pollution analysis in Delhi, India, Atm. Env., 67, 101–11, doi:10.1016/j.atmosenv.2012.10.040.
Guttikunda, S. K., R. Goel, and P. Pant (2014), Nature of air pollution, emission sources, and management in the Indian cities, Atmos. Environ., 95, 501–10, doi:10.1016/j.atmosenv.2014.07.006.
Harkey, M., T. Holloway, J. Oberman, and E. Scotty (2015), An evaluation of CMAQ NO2 using observed chemistry-meteorology correlations, J. Geophys. Res. Atmos., (2), 1–19, doi:10.1002/2014JD022994.Received.
Isakov, V. et al. (2007), Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 2—A Case Study, J. Air Waste Manage. Assoc., 57(11), 1360–1369, doi:10.3155/1047-3289.57.11.1360.
Jin, X., and T. Holloway (2015), Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument, J. Geophys. Res. Atmos., 120, 7229–7246, doi:10.1002/2015JD023250.Received.
Kemball-Cook, S., G. Yarwood, J. Johnson, B. Dornblaser, and M. Estes (2015), Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data, Atmos. Environ., 117, 1–8, doi:10.1016/j.atmosenv.2015.07.002.
King, M. D., et al. (2003), Cloud and serosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sens., 41(2), 442–458.
Krotkov, N. a. et al. (2015), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014, Atmos. Chem. Phys. Disc., 15(19), 26555–26607, doi:10.5194/acpd-15-26555-2015.
Kumari, S., et al. (2013), Analysis of long-term ozone trend over Delhi and its meteorological adjustment, Int. J. Environ. Sci. Technol., 10, 1325–1336, doi:10.1007/s13762-012-0162-3.
Lamsal, L. N., et al. (2010), Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes, J. Geophys. Res. Atmos., 115(2), 1–15, doi:10.1029/2009JD013351.
Lamsal, L. N., et al. (2013), Scaling relationship for NO2 pollution and urban population size: a satellite perspective., Environ. Sci. Technol., 47(14), 7855–61.
Lamsal, L. N., et al. (2015), U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110(2), 130–143, doi:10.1016/j.atmosenv.2015.03.055.
Lu, Z., and D. G. Streets (2012), Increase in NOx Emissions from Indian Thermal Power Plants during 1996-2010: Unit-based Inventories and Multisatellite Observations, Env. Sci. Technol., 46, 7463–70.
Lu, Z., et al. (2013), Ozone Monitoring Instrument Observations of Interannual Increases in SO 2 Emissions from Indian Coal-Fired Power Plants during 2005 − 2012.
McDonald-Buller, E. C. et al. (2011), Establishing policy relevant background (PRB) ozone concentrations in the United States., Env. Sci. Technol., 45(22), 9484–97, doi:10.1021/es2022818.
Muntaseer Billah Ibn Azkar, M. A., et al. (2012), Simulation of urban and regional air pollution in Bangladesh, J. Geophys. Res. Atmos., 117(D7), n/a-n/a, doi:10.1029/2011JD016509.
National Aeronautics and Space Administration (2012), Ozone Monitoring Instrument (OMI) Data User’s Guide.
National Ambient Air Quality Monitoring (2006), Air Quality Trends and Action Plan for Control of Air Pollution, Naaqms, (September), 5.
Oberman, J., E. Scotty, K. Maki, T. Holloway, and X. Jin (2014), Wisconsin Horizontal Interpolation Program for Contents v2.0.0 User Guide.
Pant, P., et al. (2015), Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources, Atmos. Environ., 109, 178–189, doi:10.1016/j.atmosenv.2015.02.074.
Streets, D. G. et al. (2013), Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011–1042, doi:10.1016/j.atmosenv.2013.05.051.
Tong, D. Q., et al. (2015), Development of a windblown dust emission model FENGSHAA description and initial application in the United States, Rev.
World Health Organization (2014), Outdoor Air Pollution in the World Cities, Geneva, Switzerland.
Yarwood, G., S. Rao, M. Yocke, and G. Z. Whitten (2005), Updates to the Carbon Bond chemical mechanism: CB05 Final Report to the US EPA, RT-0400675.
Zhang, Y., et al. (2009), Probing into regional O 3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study, J. Geophys. Res., 114(D22), D22305, doi:10.1029/2009JD011900.
Zhao, T. X.-P., S. Ackerman, and W. Guo (2010), Dust and Smoke Detection for Multi-Channel Imagers, Remote Sens., 2(10), 2347–2368, doi:10.3390/rs2102347.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.