Mapping the Photoresponse of Quantum-Dot-Based Photon-Number-Resolving Detectors

Autors/ores

  • Brecca Bettcher University of Wisconsin-La Crosse
  • Trevor Geerdts University of Wisconsin-La Crosse
  • Connor Govin University of Wisconsin-La Crosse
  • Eric Gansen University of Wisconsin-La Crosse

DOI:

https://doi.org/10.17307/wsc.v1i1.348

Paraules clau:

Photon, Quantum Dot, Detector, Microscopy

Resum

We report on the spatial uniformity of the photoresponces produced by a quantum dot, optically gated, field-effect transistor (QDOGFET) with photon-number-resolving capabilities. In these devices, a photoresponce is produced when a photon photocharges a quantum dot, altering the current flowing through the transistor. Variation in the photoreponces produced by different quantum dots reduces the photon-number resolution of the QDOGFET. By using an optical scanning microscope (OMS) to spatially resolve the photoresponse and a solid immersion lens (SIL) to enhance the spatial resolution of the OSM, we acquire contour plots depicting the response magnitude and efficiency of the QDOGFET across the active area. In an analysis of the contour plots, we found that the QDOGFET exhibits optimal signal uniformity when operated at low gate voltages.

Biografies de l'autor/a

Brecca Bettcher, University of Wisconsin-La Crosse

Department of Physics and Astronomy Student

Trevor Geerdts, University of Wisconsin-La Crosse

Department of Physics and Astronomy Student

Connor Govin, University of Wisconsin-La Crosse

Department of Physics and Astronomy Student

Eric Gansen, University of Wisconsin-La Crosse

Department of Physics and Astronomy Professor

Referències

Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68(21), 3121–3124.

Boroson, D. M., Bondurant R. S., & Scozzafava J. J. (2004). Overview of high rate deep space laser communications options. Free-Space Laser Communication Technologies XVI, Mecherle G. S., Young C. Y., and Stryjewsijki J. S. eds., Proc. SPIE 5338, 37-49.

Gansen, E. J., Nickel, T. B., Venner, J. M., & Ulik, S. L. (2020). Sources of 1/f noise in QDOGFET single-photon detectors. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113961.

Gansen, E. J., Rowe, M. A., Greene, M. B., Rosenberg, D., Harvey, T. E., Su, M. Y., Hadfield, R. H., Nam, S. W., & Mirin, R. P. (2007a). Operational Analysis of a Quantum Dot Optically Gated Field-Effect Transistor as a Single-Photon Detector. IEEE Journal of Selected Topics in Quantum Electronics, 13(4), 967–977.

Gansen, E. J., Rowe, M. A., Greene, M. B., Rosenberg, D., Harvey, T. E., Su, M. Y., Hadfield, R. H., Nam, S. W., & Mirin, R. P. (2007b). Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nature Photonics, 1(10), 585–588.

Gansen, E. J., Rowe, M. A., Harrington, S. D., Nehls, J. M., Etzel, S. M., Nam, S. W., & Mirin, R. P. (2013). Temperature dependence of the single-photon sensitivity of a quantum dot, optically gated, field-effect transistor. Journal of Applied Physics, 114(9), 093103.

Hemmati, H., Biswas, A., & Boroson, D. M. (2007). Prospects for Improvement of Interplanetary Laser Communication Data Rates by 30 dB. Proceedings of the IEEE, 95(10), 2082–2092.

Mendenhall, J. A., Candell, L. M., Hopman, P. I., Zogbi, G., Boroson, D. M., Caplan, D. O., Digenis, C. J., Hearn, D. R., & Shoup, R. C. (2007). Design of an Optical Photon Counting Array Receiver System for Deep-Space Communications. Proceedings of the IEEE, 95(10), 2059–2069.

Rowe, M. A., Gansen, E. J., Greene, M. B., Rosenberg, D., Harvey, T. E., Su, M. Y., Hadfield, R. H., Nam, S. W., & Mirin, R. P. (2008). Designing high electron mobility transistor heterostructures with quantum dots for efficient, number-resolving photon detection. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26(3), 1174.

Rowe, M. A., Gansen, E. J., Greene, M., Hadfield, R. H., Harvey, T. E., Su, M. Y., Nam, S. W., Mirin, R. P., & Rosenberg, D. (2006). Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Applied Physics Letters, 89(25), 253505.

Rowe, M. A., Salley, G. M., Gansen, E. J., Etzel, S. M., Nam, S. W., & Mirin, R. P. (2010). Analysis of photoconductive gain as it applies to single-photon detection. Journal of Applied Physics, 107(6), 063110.

Yusa, G., & Sakaki, H. (1996). GaAs/n-AlGaAs field-effect transistor with embedded InAs quantum traps and its programmable threshold characteristics. Electronics Letters, 32(5), 491. https://doi.org/10.1049/el:19960293

Descàrregues

Publicades

2022-02-25

Com citar

Bettcher, B., Geerdts, T., Govin, C., & Gansen, E. (2022). Mapping the Photoresponse of Quantum-Dot-Based Photon-Number-Resolving Detectors. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.348

Número

Secció

Physics and Engineering