Thick-Film ZnO Semiconducting Structures via Direct Ink Write Printing

Authors

  • Rayne Wolf University of Wisconsin - Madison

Abstract

To support future human presence on the Moon and Mars it is essential for astronauts to have the capability to manufacture electronic devices in space. The first step in realizing this goal is to develop semiconducting materials that are capable of being used in a flexible manufacturing process. ZnO is explored for its ability to be used as an ink for Direct Ink Write (DIW) printing and for its functionality as a semiconducting layer in a resistive random-access memory (RRAM) device. The sintering conditions required for functionality are explored and a switching RRAM device is fabricated using a commercial silver ink and the optimal sintering conditions. The functional device requires a low sintering temperature for a long period of time using a low ramp rate to avoid microcracking between the silver electrodes. Finally, switching behavior is exhibited with a forming voltage of 3.2V (Vform), a set voltage of 2.75V (Vset), and a reset voltage of 2.25V (Vreset) showing promising RRAM capabilities.

Author Biography

Rayne Wolf, University of Wisconsin - Madison

Rayne Wolf is a first year Ph.D. student with the Department of Industrial and Systems Engineering at the University of Wisconsin - Madison. She received her B.S. in Industrial Engineering at UW-Madison in 2022 with an emphasis on manufacturing technologies. Her research focuses on machine vision and learning for process control of additive manufacturing. More specifically, electrohydrodynamic, direct-ink write, and inkjet printing technologies for flexible electronics in-space. She is currently collaborating with NASA to create stable process control of an ISS demonstration for 3D printed semiconductors. Rayne is an NSF, NASA, and WSGC fellowship recipient.

References

Ali, S., Bae, J., Lee, C. H., Shin, S., & Kobayashi, N. P. (2017). Ultra-low power non-volatile resistive crossbar memory based on pull up resistors. Organic Electronics, 41, 73–78. doi:10.1016/j.orgel.2016.12.007

Arrabito, G., Aleeva, Y., Pezzilli, R., Ferrara, V., Medaglia, P. G., Pignataro, B., & Prestopino, G. (2020). Printing zno inks: From principles to devices. Crystals, 10(6), 449. doi:10.3390/cryst10060449

Bertolazzi, S., Bondavalli, P., Roche, S., San, T., Choi, S.-Y., Colombo, L., … Samorì, P. (2019). Nonvolatile memories based on graphene and related 2D materials. Advanced Materials, 31(10), 1806663. doi:10.1002/adma.201806663

Bessonov, A. A., Kirikova, M. N., Petukhov, D. I., Allen, M., Ryhänen, T., & Bailey, M. J. (2014). Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 14(2), 199–204. doi:10.1038/nmat4135

Catenacci, M. J., Flowers, P. F., Cao, C., Andrews, J. B., Franklin, A. D., & Wiley, B. J. (2017). Fully printed memristors from Cu-SIO2 core-shell nanowire composites. 2017 75th Annual Device Research Conference (DRC). doi:10.1109/drc.2017.7999482

Franco, M. A. M. (2016). Resistance Switching Memory Devices based on Zinc Oxide Nanoparticles on Paper Substrates (dissertation).

Gale, E., Mayne, R., Adamatzky, A., & de Lacy Costello, B. (2014). Drop-coated titanium dioxide memristors. Materials Chemistry and Physics, 143(2), 524–529. doi:10.1016/j.matchemphys.2013.09.013

Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501. doi:10.1088/0034-4885/72/12/126501

Kong, Y. L., Tamargo, I. A., Kim, H., Johnson, B. N., Gupta, M. K., Koh, T.-W., … McAlpine, M. C. (2014). 3D printed quantum dot light-emitting diodes. Nano Letters, 14(12), 7017–7023. doi:10.1021/nl5033292

Muhammad, N. M., Duraisamy, N., Rahman, K., Dang, H. W., Jo, J., & Choi, K. H. (2013). Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Current Applied Physics, 13(1), 90–96. doi:10.1016/j.cap.2012.06.017

Nelo, M., Sloma, M., Kelloniemi, J., Puustinen, J., Saikkonen, T., Juuti, J., … Jantunen, H. (2013). Inkjet-printed memristor: Printing process development. Japanese Journal of Applied Physics, 52(5S1). doi:10.7567/jjap.52.05db21

Park, Y., Yun, I., Chung, W. G., Park, W., Lee, D. H., & Park, J. (2022). High‐resolution 3D printing for Electronics. Advanced Science, 9(8), 2104623. doi:10.1002/advs.202104623

Siebert, L., Wolff, N., Ababii, N., Terasa, M.-I., Lupan, O., Vahl, A., … Adelung, R. (2020). Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensors. Nano Energy, 70, 104420. doi:10.1016/j.nanoen.2019.104420

Simanjuntak, F. M., Panda, D., Wei, K.-H., & Tseng, T.-Y. (2016). Status and prospects of zno-based resistive switching memory devices. Nanoscale Research Letters, 11(1). doi:10.1186/s11671-016-1570-y

Torres Arango, M. A., Abidakun, O. A., Korakakis, D., & Sierros, K. A. (2017). Tuning the crystalline microstructure of al-doped zno using direct ink writing. Flexible and Printed Electronics, 2(3), 035006. doi:10.1088/2058-8585/aa8801

Tubío, C. R., Guitián, F., & Gil, A. (2016). Fabrication of zno periodic structures by 3D printing. Journal of the European Ceramic Society, 36(14), 3409–3415. doi:10.1016/j.jeurceramsoc.2016.05.025

Xu, S., & Wu, W. (2020). Ink‐based additive nanomanufacturing of Functional Materials for human‐integrated Smart Wearables. Advanced Intelligent Systems, 2(10), 2000117. doi:10.1002/aisy.202000117

Zahoor, F., Azni Zulkifli, T. Z., & Khanday, F. A. (2020). Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Research Letters, 15(1). doi:10.1186/s11671-020-03299-9

Downloads

Published

2026-02-03

How to Cite

Wolf, R. (2026). Thick-Film ZnO Semiconducting Structures via Direct Ink Write Printing. Proceedings of the Wisconsin Space Conference, 1(1). Retrieved from https://dione.carthage.edu/ojs/index.php/wsc/article/view/392

Issue

Section

Physics and Engineering