Thick-Film ZnO Semiconducting Structures via Direct Ink Write Printing
Abstract
To support future human presence on the Moon and Mars it is essential for astronauts to have the capability to manufacture electronic devices in space. The first step in realizing this goal is to develop semiconducting materials that are capable of being used in a flexible manufacturing process. ZnO is explored for its ability to be used as an ink for Direct Ink Write (DIW) printing and for its functionality as a semiconducting layer in a resistive random-access memory (RRAM) device. The sintering conditions required for functionality are explored and a switching RRAM device is fabricated using a commercial silver ink and the optimal sintering conditions. The functional device requires a low sintering temperature for a long period of time using a low ramp rate to avoid microcracking between the silver electrodes. Finally, switching behavior is exhibited with a forming voltage of 3.2V (Vform), a set voltage of 2.75V (Vset), and a reset voltage of 2.25V (Vreset) showing promising RRAM capabilities.
References
Ali, S., Bae, J., Lee, C. H., Shin, S., & Kobayashi, N. P. (2017). Ultra-low power non-volatile resistive crossbar memory based on pull up resistors. Organic Electronics, 41, 73–78. doi:10.1016/j.orgel.2016.12.007
Arrabito, G., Aleeva, Y., Pezzilli, R., Ferrara, V., Medaglia, P. G., Pignataro, B., & Prestopino, G. (2020). Printing zno inks: From principles to devices. Crystals, 10(6), 449. doi:10.3390/cryst10060449
Bertolazzi, S., Bondavalli, P., Roche, S., San, T., Choi, S.-Y., Colombo, L., … Samorì, P. (2019). Nonvolatile memories based on graphene and related 2D materials. Advanced Materials, 31(10), 1806663. doi:10.1002/adma.201806663
Bessonov, A. A., Kirikova, M. N., Petukhov, D. I., Allen, M., Ryhänen, T., & Bailey, M. J. (2014). Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 14(2), 199–204. doi:10.1038/nmat4135
Catenacci, M. J., Flowers, P. F., Cao, C., Andrews, J. B., Franklin, A. D., & Wiley, B. J. (2017). Fully printed memristors from Cu-SIO2 core-shell nanowire composites. 2017 75th Annual Device Research Conference (DRC). doi:10.1109/drc.2017.7999482
Franco, M. A. M. (2016). Resistance Switching Memory Devices based on Zinc Oxide Nanoparticles on Paper Substrates (dissertation).
Gale, E., Mayne, R., Adamatzky, A., & de Lacy Costello, B. (2014). Drop-coated titanium dioxide memristors. Materials Chemistry and Physics, 143(2), 524–529. doi:10.1016/j.matchemphys.2013.09.013
Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501. doi:10.1088/0034-4885/72/12/126501
Kong, Y. L., Tamargo, I. A., Kim, H., Johnson, B. N., Gupta, M. K., Koh, T.-W., … McAlpine, M. C. (2014). 3D printed quantum dot light-emitting diodes. Nano Letters, 14(12), 7017–7023. doi:10.1021/nl5033292
Muhammad, N. M., Duraisamy, N., Rahman, K., Dang, H. W., Jo, J., & Choi, K. H. (2013). Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Current Applied Physics, 13(1), 90–96. doi:10.1016/j.cap.2012.06.017
Nelo, M., Sloma, M., Kelloniemi, J., Puustinen, J., Saikkonen, T., Juuti, J., … Jantunen, H. (2013). Inkjet-printed memristor: Printing process development. Japanese Journal of Applied Physics, 52(5S1). doi:10.7567/jjap.52.05db21
Park, Y., Yun, I., Chung, W. G., Park, W., Lee, D. H., & Park, J. (2022). High‐resolution 3D printing for Electronics. Advanced Science, 9(8), 2104623. doi:10.1002/advs.202104623
Siebert, L., Wolff, N., Ababii, N., Terasa, M.-I., Lupan, O., Vahl, A., … Adelung, R. (2020). Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensors. Nano Energy, 70, 104420. doi:10.1016/j.nanoen.2019.104420
Simanjuntak, F. M., Panda, D., Wei, K.-H., & Tseng, T.-Y. (2016). Status and prospects of zno-based resistive switching memory devices. Nanoscale Research Letters, 11(1). doi:10.1186/s11671-016-1570-y
Torres Arango, M. A., Abidakun, O. A., Korakakis, D., & Sierros, K. A. (2017). Tuning the crystalline microstructure of al-doped zno using direct ink writing. Flexible and Printed Electronics, 2(3), 035006. doi:10.1088/2058-8585/aa8801
Tubío, C. R., Guitián, F., & Gil, A. (2016). Fabrication of zno periodic structures by 3D printing. Journal of the European Ceramic Society, 36(14), 3409–3415. doi:10.1016/j.jeurceramsoc.2016.05.025
Xu, S., & Wu, W. (2020). Ink‐based additive nanomanufacturing of Functional Materials for human‐integrated Smart Wearables. Advanced Intelligent Systems, 2(10), 2000117. doi:10.1002/aisy.202000117
Zahoor, F., Azni Zulkifli, T. Z., & Khanday, F. A. (2020). Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Research Letters, 15(1). doi:10.1186/s11671-020-03299-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Proceedings of the Wisconsin Space Conference

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.