A Beginner’s Guide to Line Intensity Mapping Power Spectra

Authors

DOI:

https://doi.org/10.17307/wsc.v1i1.352

Keywords:

Intensity Mapping, Large-scale Structure

Abstract

Line intensity mapping (LIM) is an emerging technique in measuring galaxy evolution and the large-scale structure of the universe. LIM surveys measure the cumulative emission from all galaxies emitting a given line at a particular redshift, which trace the distribution of dark matter throughout the universe. In this proceeding, we provide an introduction to LIM modeling, focusing on power spectrum calculation. Beyond these calculations, we describe how these power spectra may be used to constrain properties of galaxy evolution and large-scale structure cosmology. Throughout, we use the anticipated EXCLAIM signal of ionized carbon ([CII]) at redshift z=3 as a case study. Our goal is to provide a starting point to non-experts, e.g. upper-level undergraduate and graduate students familiar with the basics of cosmology, with the tools necessary to understand the literature and generate LIM power spectrum models themselves, while also describing a wide array of literature for continued studies.

Author Biography

Trevor Oxholm, University of Wisconsin-Madison

Doctoral Candidate

Department of Physics

University of Wisconsin-Madison

References

Abbott, T., Abdalla, F. B., Aleksi ́c, J., Allam, S., Amara, A., Bacon, D., . . . others (2016). The dark energy survey: more than dark energy–an overview. Monthly Notices of the Royal Astronomical Society, 460(2), 1270–1299.

Ade, P., Aravena, M., Barria, E., Beelen, A., Benoit, A., B ́ethermin, M., . . . others (2020). A wide field- of-view low-resolution spectrometer at apex: Instrument design and scientific forecast. Astronomy & Astrophysics, 642, A60.

Anderson, C., Luciw, N., Li, Y.-C., Kuo, C., Yadav, J., Masui, K., ... others (2018). Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2df galaxy densities. Monthly Notices of the Royal Astronomical Society, 476(3), 3382–3392.

Bernal, J. L., Breysse, P. C., Gil-Mar ́ın, H., & Kovetz, E. D. (2019). User’s guide to extracting cosmological information from line-intensity maps. Physical Review D, 100(12), 123522.

Bernal, J. L., Caputo, A., & Kamionkowski, M. (2021). Strategies to detect dark-matter decays with line-intensity mapping. Physical Review D, 103(6), 063523.

Bolatto, A. D., Wolfire, M., & Leroy, A. K. (2013). The co-to-h2 conversion factor. Annual Review of Astronomy and Astrophysics, 51, 207–268.

Breysse, P. C., & Alexandroff, R. M. (2019). Observing agn feedback with co intensity mapping. Monthly Notices of the Royal Astronomical Society, 490(1), 260–273.

Carilli, C., & Walter, F. (2013). Cool gas in high-redshift galaxies. Annual Review of Astronomy and Astrophysics, 51, 105–161.

Cataldo, G., Ade, P., Anderson, C., Barrentine, E., Bellis, N., Bolatto, A., . . . others (2020). The experiment for cryogenic large-aperture intensity mapping (exclaim). Journal of Low Temperature Physics, 1–11.

Chang, T.-C., Pen, U.-L., Bandura, K., & Peterson, J. B. (2010). An intensity map of hydrogen 21-cm

emission at redshift z 0.8. Nature, 466(7305), 463–465.

Chang, T.-C., Pen, U.-L., Peterson, J. B., & McDonald, P. (2008). Baryon acoustic oscillation intensity

mapping of dark energy. Physical Review Letters, 100(9), 091303.

Cheng, Y.-T., & Chang, T.-C. (2021). Cosmic near-infrared background tomography with spherex using

galaxy cross-correlations. arXiv preprint arXiv:2109.10914.

Cooray, A., & Sheth, R. (2002). Halo models of large scale structure. Physics reports, 372(1), 1–129.

Croft, R. A., Miralda-Escud ́e, J., Zheng, Z., Blomqvist, M., & Pieri, M. (2018). Intensity mapping with

sdss/boss lyman-α emission, quasars, and their lyman-α forest. Monthly Notices of the Royal Astronomical

Society, 481(1), 1320–1336.

Dawson, K. S., Schlegel, D. J., Ahn, C. P., Anderson, S. F., Aubourg, E., Bailey, S., . . . others (2012). The

baryon oscillation spectroscopic survey of sdss-iii. The Astronomical Journal, 145(1), 10.

Diemer, B. (2018). Colossus: A python toolkit for cosmology, large-scale structure, and dark matter halos.

The Astrophysical Journal Supplement Series, 239(2), 35.

Glenn, J., Bradford, C. M., Amini, R., Moore, B., Benson, A., Armus, L., ... others (2018). The galaxy

evolution probe: a concept for a mid and far-infrared space observatory. In Space telescopes and instru-

mentation 2018: Optical, infrared, and millimeter wave (Vol. 10698, p. 106980L).

Gong, Y., Chen, X., & Cooray, A. (2020). Cosmological constraints from line intensity mapping with

interlopers. The Astrophysical Journal, 894(2), 152.

Hogg, D. W. (1999). Distance measures in cosmology. arXiv preprint astro-ph/9905116.

Kaiser, N. (1987). Clustering in real space and in redshift space. Monthly Notices of the Royal Astronomical

Society, 227(1), 1–21.

Keating, G. K., Marrone, D. P., Bower, G. C., & Keenan, R. P. (2020). An intensity mapping detection of

aggregate co line emission at 3 mm. The Astrophysical Journal, 901(2), 141.

Keenan, R. P., Keating, G. K., & Marrone, D. P. (2021). An intensity mapping constraint on the co-galaxy

cross power spectrum at redshift ̃ 3. arXiv preprint arXiv:2110.02239.

Kennicutt Jr, R. C. (1998). The global schmidt law in star-forming galaxies. The Astrophysical Journal,

(2), 541.

Leisawitz, D., Amatucci, E. G., Allen, L. N., Arenberg, J. W., Armus, L., Battersby, C., . . . others (2021).

Origins space telescope: baseline mission concept. Journal of Astronomical Telescopes, Instruments, and

Systems, 7(1), Art–No.

Lidz, A., & Taylor, J. (2016). On removing interloper contamination from intensity mapping power spectrum

measurements. The Astrophysical Journal, 825(2), 143.

Liu, R. H., & Breysse, P. C. (2021). Coupling parsec and gigaparsec scales: Primordial non-gaussianity with

multitracer intensity mapping. Physical Review D, 103(6), 063520.

Masui, K., Switzer, E., Banavar, N., Bandura, K., Blake, C., Calin, L.-M., . . . others (2013). Measurement

of 21 cm brightness fluctuations at z 0.8 in cross-correlation. The Astrophysical Journal Letters, 763(1),

L20.

Oxholm, T. M., & Switzer, E. R. (2021). Intensity mapping without cosmic variance. Physical Review D,

(8), 083501.

Padmanabhan, H. (2019). Constraining the evolution of [c ii] intensity through the end stages of reionization.

Monthly Notices of the Royal Astronomical Society, 488(3), 3014–3023.

Pullen, A. R., Serra, P., Chang, T.-C., Dor ́e, O., & Ho, S. (2018). Search for c ii emission on cosmological

scales at redshift z 2.6. Monthly Notices of the Royal Astronomical Society, 478(2), 1911–1924.

Sheth, R. K., & Tormen, G. (2002). An excursion set model of hierarchical clustering: ellipsoidal collapse

and the moving barrier. Monthly Notices of the Royal Astronomical Society, 329(1), 61–75.

Spinoglio, L., Dasyra, K. M., Franceschini, A., Gruppioni, C., Valiante, E., & Isaak, K. (2012). Far- ir/submillimeter spectroscopic cosmological surveys: Predictions of infrared line luminosity functions for

z¡ 4 galaxies. The Astrophysical Journal, 745(2), 171.

Stacey, G., Aravena, M., Basu, K., Battaglia, N., Beringue, B., Bertoldi, F., ... others (2018). Ccat-

prime: science with an ultra-widefield submillimeter observatory on cerro chajnantor. In Ground-based

and airborne telescopes vii (Vol. 10700, p. 107001M).

Sun, G., Chang, T.-C., Uzgil, B. D., Bock, J., Bradford, C. M., Butler, V., ... others (2021). Probing

cosmic reionization and molecular gas growth with time. The Astrophysical Journal, 915(1), 33.

Switzer, E., Masui, K., Bandura, K., Calin, L.-M., Chang, T.-C., Chen, X.-L., . . . others (2013). Determi- nation of z 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation. Monthly

Notices of the Royal Astronomical Society: Letters, 434(1), L46–L50.

Tegmark, M., Taylor, A. N., & Heavens, A. F. (1997). Karhunen-loeve eigenvalue problems in cosmology:

How should we tackle large data sets? The Astrophysical Journal, 480(1), 22.

Tinker, J. L., Robertson, B. E., Kravtsov, A. V., Klypin, A., Warren, M. S., Yepes, G., & Gottl ̈ober, S. (2010). The large-scale bias of dark matter halos: numerical calibration and model tests. The Astrophysical

Journal, 724(2), 878.

Vieira, J., Aguirre, J., Bradford, C. M., Filippini, J., Groppi, C., Marrone, D., ... others (2019). The

terahertz intensity mapper (tim): an imaging spectrometer for galaxy evolution studies at high-redshift.

In 2019 30th international symposium on space terahertz technology, isstt 2019.

Wolz, L., Pourtsidou, A., Masui, K. W., Chang, T.-C., Bautista, J. E., Mu ̈ller, E.-M., . . . others (2021). Hi constraints from the cross-correlation of eboss galaxies and green bank telescope intensity maps. arXiv

preprint arXiv:2102.04946.

Yang, S., Pullen, A. R., & Switzer, E. R. (2019). Evidence for c ii diffuse line emission at redshift z 2.6.

Monthly Notices of the Royal Astronomical Society: Letters, 489(1), L53–L57.

York, D. G., Adelman, J., Anderson Jr, J. E., Anderson, S. F., Annis, J., Bahcall, N. A., . . . others (2000).

The sloan digital sky survey: Technical summary. The Astronomical Journal, 120(3), 1579.

Downloads

Published

2022-02-25

How to Cite

Oxholm, T. (2022). A Beginner’s Guide to Line Intensity Mapping Power Spectra. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.352

Issue

Section

Astronomy and Cosmology