Explorations of Post Constrained Recovery Residual Stress of Shape Memory Alloys in Self-healing Applications
DOI:
https://doi.org/10.17307/wsc.v1i1.341Keywords:
shape memory alloy, self-healing materials, NiTi, constrained recovery, post constrained recovery residual stress (PCRRS)Abstract
Self-healing materials with intrinsic capabilities of geometric restoration and damage recovery have a tremendous potential to improve product safety and reliability, especially in space applications where recovery or manual performance of repairs may be prohibitive, dangerous, or impossible. Self-healing materials typically incorporate a complex internal structure containing constituent materials of different functionality and one of the primary methods is to reinforce self-healing materials with shape memory alloys that can be activated to restore geometry and close a fracture. Recent experimental investigation revealed that Nickel Titanium (NiTi) shape memory alloys (SMAs) could repeatedly produce stable residual stresses following constrained recovery when held in a constrained condition during temperature change through the forward and reverse transformations. The ability to produce this post constrained recovery residual stress (PCRRS) in a low temperature state, without continuous actuation, and to regenerate it repeatedly have the potential to advance self-healing capabilities and even damage prevention.
References
Aïssa, B., Therriault, D., Haddad, E., & Jamroz, W. (2012). Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies. Advances in Materials Science and Engineering, 2012. doi:https://doi.org/10.1155/2012/854203
Alaneme, K., & Omosule, O. (2015). Experimental Studies of Self Healing Behaviour of Under-Aged Al-Mg-Si Alloys and 60Sn-40Pb Alloy Reinforced Aluminium Metal-Metal Composites. Journal of Minerals and Materials Characterization and Engineering, 3(1), 1-8. doi:10.4236/jmmce.2015.31001
Blaiszik, B., Kramer, S., Olugebefola, S., Moore, J., Sottos, N., & White, S. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40(1), 179-211. doi:10.1146/annurev-matsci-070909-104532
Burton, D., Gao, X., & Brinson, L. (2006). Finite element simulation of a self-healing shape memory alloy composite. Mechanics of Materials, 38(5-6), 525-537. doi:https://doi.org/10.1016/j.mechmat.2005.05.021
Chen, X., Hehr, A., Dapino, M., & Anderson, P. (2015). Deformation Mechanisms in NiTi-Al Composites Fabricated by Ultrasonic Additive Manufacturing. Shape Memory and Superelasticity, 1, 294–309. doi:https://doi.org/10.1007/s40830-015-0032-1
Coughlin, J., Williams, J., & Chawla, N. (2009). Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix "smart" composites. Journal of Materials Science, 44(3), 700-707. doi:https://doi.org/10.1007/s10853-008-3188-7
Coughlin, J., Williams, J., Crawford, G., & Chawla, N. (2009). Interfacial Reactions in Model NiTi Shape Memory Alloy Fiber-Reinforced Sn Matrix “Smart” Composites. Metallurgical and Materials Transactions A, 40, 176–184. doi:https://doi.org/10.1007/s11661-008-9676-1
Das, R., Melchior, C., & Karumbaiah, K. (2016). Self-healing composites for aerospace applications. In S. Rana, & R. Fangueiro, Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications (pp. 333-364). Woodhead Publishing. doi:https://doi.org/10.1016/B978-0-08-100037-3.00011-0
Dutta, I., Majumdar, B., Pan, D., Horton, W., Wright, W., & Wang, Z. (2004). Development of a novel adaptive lead-free solder containing reinforcements displaying the shape-memory effect. Journal of Electronic Materials, 33, 258–270. doi:https://doi.org/10.1007/s11664-004-0131-9
Dutta, I., Pan, D., Ma, S., Majumdar, B., & Harris, S. (2006). Role of shape-memory alloy reinforcements on strain evolution in lead-free solder joints. Journal of Electronic Materials, 35, 1902–1913. doi:https://doi.org/10.1007/s11664-006-0174-1
Farahi, B., Esfahani, M., & Sabzi, J. (2020). Experimental Investigation on the Behavior of Reinforced Concrete Beams Retrofitted with NSM-SMA/FRP. Amirkabir Journal of Civil Engineering, 51(4), 133-136. doi:10.22060/ceej.2016.689
Ferguson, J., Schultz, B., & Rohatgi, P. (2014). Self-Healing Metals and Metal Matrix Composites. The Journal of The Minerals, Metals & Materials Society, 66, pages866–871. doi:https://doi.org/10.1007/s11837-014-0912-4
Haider, M., Correa, A., Moghadam, A., Yan, X., & Salowitz, N. (2018). Experimental Exploration Of Post Constrained Recovery Mechanics Of NiTi. Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, (p. V002T02A012). San Antonio, Texas. doi:https://doi.org/10.1115/SMASIS2018-8168
Haider, M., Rezaee, M., Yazdi, A., & Salowitz, N. (2019). Investigation into post constrained recovery properties of nickel titanium shape memory alloys. Smart Materials and Structures, 28(10), 105044. doi:https://doi.org/10.1088/1361-665X/ab3ad4
Haider, M., Yazdi, A., Rezaee, M., Tsai, L., & Salowitz, N. (2019). Mechanics of Post Constrained Recovery Residual Stress Produced by NiTi. Proceedings of the ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, (p. V001T02A007). Louisville, Kentucky. doi:https://doi.org/10.1115/SMASIS2019-5619
Hassan, M., Mehrpouya, M., Emamian, S., & Sheikholeslam, M. (2013). Review of Self-Healing Effect on Shape Memory Alloy (SMA) Structures. Advanced Materials Research, 701, 87-92. doi:https://doi.org/10.4028/www.scientific.net/AMR.701.87
Hayes, S., Jones, F., Marshiya, K., & Zhang, W. (2007). A self-healing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38(4), 1116-1120. doi:10.1016/j.compositesa.2006.06.008
Jani, J., Leary, M., Subic, A., & Gibson, M. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design, 56, 1078-1113. doi:https://doi.org/10.1016/j.matdes.2013.11.084
Kapgan, M., & Melton, K. (1990). Shape memory alloy tube and pipe couplings. In T. Duerig, K. Melton, D. Stockel, & C. Wayman, Engineering Aspects of Shape Memory Alloys (pp. 137-148). London: Butterworth-Heinemann.
Kilicli, V., Yan, X., Salowitz, N., & Rohatgi, P. (2018). Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites. The Journal of The Minerals, Metals & Materials Society, 70, 846–854. doi:https://doi.org/10.1007/s11837-018-2835-y
Lagoudas, D. (2008). Shape Memory Alloys: Modeling and Engineering Applications. Springer US.
Lau, K.-t. (2002). Vibration characteristics of SMA composite beams with different boundary conditions. Materials and Design, 23(8), 741–749. doi:https://doi.org/10.1016/S0261-3069(02)00069-9
Li, D., Zhang, X., Xiong, Z., & Mai, Y.-W. (2010). Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength. Journal of Alloys and Compounds, 190(1-2), L15-L19. doi:https://doi.org/10.1016/j.jallcom.2009.10.025
Manuel, M. (2007). Design of a Biomimetic Self-Healing Alloy Composite. Evanston, Illinois: PhD Thesis - Northwestern University.
Manuel, M. V., & Olson, G. B. (2007). Biomimetic Self-Healing Metals. Proceedings of the 1st Intl. Conference on Self-Healing Materials. Noordwijk aan Zee.
Misra, S. (2013). Shape Memory Alloy Reinforced Self-healing Metal Matrix Composites. Milwaukee, Wisconsin: Master's Thesis-University of Wisconsin–Milwaukee. Retrieved from https://dc.uwm.edu/etd/731/
Ruzek, A. (2009). Synthesis and characterization of metallic systems with potential for self-healing. Milwaukee, Wisconsin: Master's Thesis- University of Wisconsin-Milwaukee.
Salowitz, N., Correa, A., Santebennur, T., Moghadam, A., Yan, X., & Rohatgi, P. (2018). Mechanics of nickel–titanium shape memory alloys undergoing partially constrained recovery for self-healing materials. Journal of Intelligent Material Systems and Structures, 29(15), 3025-3036. doi:https://doi.org/10.1177/1045389X18781260
Song, G., Kelly, B., & Agrawal, B. (2000). Active position control of a shape memory alloy wire actuated composite beam. Smart Materials and Structures, 9(5), 711. doi:https://doi.org/10.1088/0964-1726/9/5/316
Trask, R., Williams, H., & Bond, I. (2007). Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2(1). doi:https://doi.org/10.1088/1748-3182/2/1/P01
Wang, Z., Dutta, I., & Majumdar, B. (2006). Thermomechanical response of a lead-free solder reinforced with a shape memory alloy. Scripta Materialia, 54(4), 627-632. doi:https://doi.org/10.1016/j.scriptamat.2005.10.037
White, S., Sottos, N., Geubelle, P., Moore, J., Kessler, M., Sriram, S., . . . Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409, 794–797. doi:https://doi.org/10.1038/35057232
Yamauchi, K., Ohkata, I., Tsuchiya, K., & Miyazaki, S. (2011). Shape Memory and Superelastic Alloys: Applications and Technologies. Woodhead Publishing.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.