Investigation of Alteration Conditions within Volcanic Cave Systems: Analogue for Venus Surface Geology

Authors

  • Dylan Alexander Childs University of Wisconsin- Milwaukee

Keywords:

Venus, Lava tubes, alteration, analogue

Abstract

 High surface temperatures and a thick atmosphere, rich in carbon dioxide severely limit orbital spectroscopic and in-situ research of geologic processes on Venus, including its mineralogy. Remote reflectance spectroscopy is limited to observations in only three near-infrared windows. These measurements are capable of measuring relative ferrous iron abundance, but variations in measurements could result from different causes. Laboratory experiments and modeling have helped Venus researchers interpret spectroscopic readings of the planet’s surface. Experiments and models indicate surface-atmosphere interactions alter basaltic rock surfaces to produce secondary minerals like hematite and anhydrite, which may affect spectroscopic readings. Using lava tubes as an analogue for the surface mineralogy of Venus may also prove informative. Lava tubes are geologic landforms that are made in high-temperature, insulated environments and are observed to contain minerals predicted to be on Venus. Tholeiitic basalt samples were collected from the interiors of lava tubes and preliminary data from X-ray diffraction and visible-near infrared spectroscopy indicate the basalt samples had altered under high-temperature conditions near or above that observed on Venus.

References

Cutler, K. S., Filiberto, J., Treiman, A. H., & Trang, D. (2020). Experimental investigation of oxidation of pyroxene and basalt: Implications for spectroscopic analyses of the surface of Venus and the ages of lava flows. The Planetary Science Journal, 1(1), 21.

Dyar, M. D., Helbert, J., Cooper, R. F., Sklute, E. C., Maturilli, A., Mueller, N. T., …& Smrekar, S. E. (2021).

Surface weathering on Venus: Constraints from kinetic, spectroscopic, and geochemical data. Icarus, 358, 114139. Eaton, J. P., & Murata, K. J. (1960). How Volcanoes Grow: Geology, geochemistry, and geophysics disclose the constitution and eruption mechanism of Hawaiian volcanoes. Science, 132(3432), 925-938.

Filiberto, J., Trang, D., Treiman, A. H., & Gilmore, M. S. (2020). Present-day volcanism on Venus as evidenced from weathering rates of olivine. Science Advances, 6(1), eaax7445.

Foley, B. J. (2015). The role of plate tectonic–climate coupling and exposed land area in the development of habitable climates on rocky planets. The Astrophysical Journal, 812(1), 36.

Garvin, J. B., Getty, S. A., Arney, G. N., Johnson, N. M., Kohler, E., Schwer, K. O., ... & Zolotov, M. (2022). Revealing the mysteries of Venus: The DAVINCI mission. The Planetary Science Journal, 3(5), 117.

Ghail, R. C., Hall, D., Mason, P. J., Herrick, R. R., Carter, L. M., & Williams, E. (2018). VenSAR on EnVision: Taking earth observation radar to Venus. International journal of applied earth observation and geoinformation, 64, 365-376.

Gilmore, M., Treiman, A., Helbert, J., & Smrekar, S. (2017). Venus Surface Composition Constrained by Observation and Experiment. Space Science Reviews, 212(3-4), 1511–1540.

Heliker, C., & Mattox, T. N. (2003). The First Two Decades of the Pu'u ‘Ō'ō-Kūpaianaha. The Puʻu ʻŌʻōKūpaianaha Eruption of Kīlauea Volcano, Hawaiʻi: The First 20 Years, 1676(1676), 1.

Helz, R.T., Heliker, C., Hon, K., & Mangan, M. (2003). Thermal Efficiency of Lava Tubes in the Pu‘u ‘Ō‘ō-

Kūpaianaha Eruption. The Pu ‘u ‘Ö ‘ö-Küpaianaha Eruption of Kïlauea Volcano, Hawai ‘i: The First 20 Years, 1676, 105.

Lockwood, J. P., & Lipman, P. W. (1987). Holocene eruptive history of Mauna Loa volcano. US Geol. Surv. Prof.

Pap, 1350(1), 509-535.

Minitti, M. E., Lane, M. D., & Bishop, J. L. (2005). A new hematite formation mechanism for Mars. Meteoritics & Planetary Science, 40(1), 55-69.

Neal, C. A., Brantley, S. R., Antolik, L., Babb, J. L., Burgess, M., Calles, K., ... & Damby, D. (2019). The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science, 363(6425), 367-374.

Porter, A. (2000). The initial exploration of lower Lae’apuki cave system, Hawai’I volcanoes national park. NSS News, 58(1), 10-17.

Santos, A. R., Gilmore, M. S., Greenwood, J. P., Nakley, L. M., Phillips, K., Kremic, T., & Lopez, X. (2023).

Experimental weathering of rocks and minerals at Venus conditions in the Glenn Extreme Environments Rig (GEER). Journal of Geophysical Research: Planets, 128(3), e2022JE007423.

Sawłowicz, Z. (2020). A short review of pyroducts (lava tubes). In Annales Societatis Geologorum Poloniae (Vol. 90, No. 4, pp. 513-534). Polskie Towarzystwo Geologiczne.

Seiff, A., Schofield, J. T., Kliore, A. J., Taylor, F. W., Limaye, S. S., Revercomb, H. E., ... & Marov, M. Y. (1985). Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Advances in Space Research, 5(11), 3-58.

Smrekar, S., Hensley, S., Nybakken, R., Wallace, M. S., Perkovic-Martin, D., You, T. H., ... & Mazarico, E. (2022, March). VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a discovery mission. In 2022 IEEE Aerospace Conference (AERO) (pp. 1-20).

Smrekar, S. E., Stofan, E. R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., ... & Drossart, P. (2010).

Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328(5978), 605-608.

Thornber, C. R. (2001). OLIVINE LIQUID RELATIONS OF LAVA ERUPTED BY KILAUEA VOLCANO FROM 1994 TO 1998: IMPLICATIONS FOR SHALLOW MAGMATIC PROCESSES ASSOCIATED WITH THE ONGOING EAST-RIFT-ZONE ERUPTION. The Canadian Mineralogist, 39(2), 239–266.

Vinogradov, A. P., Surkov, Y. A., & Kirnozov, F. F. (1973). The content of uranium, thorium, and potassium in the rocks of Venus as measured by Venera 8. Icarus, 20(3), 253-259.

White, W. B. (2010). Secondary minerals in volcanic caves: data from Hawai'i. Journal of Cave and Karst Studies, 72(2), 75-85.

Yang, J., Wang, C., Zhang, J. et al. (2023). Genesis of Hawaiian lavas by crystallization of picritic magma in the deep mantle. Nat Commun 14, 1382.

Zolotov, M. Y. (2018). Gas–solid interactions on Venus and other solar system bodies. High Temperature Gas-Solid Reactions in Earth and Planetary Processes, 351-392.

Downloads

Published

2026-02-03

How to Cite

Childs, D. A. (2026). Investigation of Alteration Conditions within Volcanic Cave Systems: Analogue for Venus Surface Geology. Proceedings of the Wisconsin Space Conference, 1(1). Retrieved from https://dione.carthage.edu/ojs/index.php/wsc/article/view/400