Testing Ranking Statistics for Joint Gravitational Wave and Gamma-Ray Burst Searches

Authors

DOI:

https://doi.org/10.17307/wsc.v1i1.350

Keywords:

Multimessenger, Gravitational Waves, Gamma-ray Bursts

Abstract

Joint searches looking for associations between gravitational waves and gamma-ray bursts use ranking statistics toseparate real from random coincidences. However, there is no clear choice of which ranking statistics are more useful.We perform a simulated joint search simulating gravitational waves from the LIGO-Virgo-KAGRA (LVK) collabo-ration and Fermi-GBM gamma-ray candidates from the third operating run of LVK. We find evidence that rankingstatistics that include more information on the significance of the individual candidates perform better, although morerealistic data is needed to confirm this.

References

Aasi, J., Abbott, B., Abbott, R., Abbott, T., Abernathy, M. R., Acernese, F., . . . others (2014). Methods and results of a search for gravitational waves associated with gamma-ray bursts using the geo 600, ligo, and virgo detectors. Physical Review D, 89(12), 122004.

Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., . . . others (2018). Gw170817: Measurements of neutron star radii and equation of state. Physical review letters, 121(16), 161101.

Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., . . . others (2017). Search for gravita- tional waves associated with gamma-ray bursts during the first advanced ligo observing run and implications for the origin of grb 150906b. The Astrophysical Journal, 841(2), 89.

Abbott, B. P., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., . . . others (2017a). Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a. The Astrophysical Journal Letters, 848(2), L13.

Abbott, B. P., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., . . . others (2017b). Gw170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters, 119(16), 161101.

Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., Adams, C., . . . others (2020). Search for gravitational waves associated with gamma-ray bursts detected by fermi and swift during the ligo-virgo run o3a. arXiv preprint arXiv:2010.14550.

Ashton, G., Ackley, K., Hernandez, I. M., & Piotrzkowski, B. (2020). Current observations are insufficient to confidently associate the binary black hole merger gw190521 with agn j124942. 3+ 344929. arXiv preprint arXiv:2009.12346.

Ashton, G., Burns, E., Dal Canton, T., Dent, T., Eggenstein, H.-B., Nielsen, A. B., . . . Zhu, S. J. (2018). Coincident detection significance in multimessenger astronomy. The Astrophysical Journal, 860(1), 6.

Blinnikov, S., Novikov, I., Perevodchikova, T., & Polnarev, A. (1984). Exploding neutron stars in close binaries. Soviet Astronomy Letters, 10, 177–179.

Cannon, K., Caudill, S., Chan, C., Cousins, B., Creighton, J. D., Ewing, B., . . . others (2021). Gstlal: A software framework for gravitational wave discovery. SoftwareX, 14, 100680.

Cho, M.-A. (2019). Low-latency searches for gravitational waves and their electromagnetic counterparts with ad- vanced ligo and virgo (Unpublished doctoral dissertation). University of Maryland.

Collaboration, L. S., Collaboration, V., Collaboration, M., Collaboration, D. E. C. G.-E., Collaboration, D., Collab- oration, D., . . . others (2017). A gravitational-wave standard siren measurement of the hubble constant. Nature, 551(7678), 85–88.

Connaughton, V., Burns, E., Goldstein, A., Blackburn, L., Briggs, M., Zhang, B.-B., . . . others (2016). Fermi gbm observations of ligo gravitational-wave event gw150914. The Astrophysical Journal Letters, 826(1), L6.

Coughlin, M. W., Dietrich, T., Margalit, B., & Metzger, B. D. (2019). Multimessenger bayesian parameter inference of a binary neutron star merger. Monthly Notices of the Royal Astronomical Society: Letters, 489(1), L91–L96.

Eichler, D., Livio, M., Piran, T., & Schramm, D. N. (1989). Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature, 340(6229), 126–128.

Farah, A., Essick, R., Doctor, Z., Fishbach, M., & Holz, D. E. (2020). Counting on short gamma-ray bursts: Gravitational-wave constraints of jet geometry. The Astrophysical Journal, 895(2), 108.

Gehrels, N., Chincarini, G., Giommi, P., Mason, K., Nousek, J. A., Wells, A., . . . others (2004). The swift gamma-ray burst mission. The Astrophysical Journal, 611(2), 1005.

Goldstein, A., Hamburg, R., Wood, J., Hui, C. M., Cleveland, W. H., Kocevski, D., . . . others (2019). Updates to the fermi gbm targeted sub-threshold search in preparation for the third observing run of ligo/virgo. arXiv preprint arXiv:1903.12597.

Goldstein, A., Veres, P., Burns, E., Briggs, M., Hamburg, R., Kocevski, D., . . . others (2017). An ordinary short gamma-ray burst with extraordinary implications: Fermi-gbm detection of grb 170817a. The Astrophysical Journal Letters, 848(2), L14.

Graham, M., Ford, K., McKernan, B., Ross, N., Stern, D., Burdge, K., . . . others (2020). Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event s190521g. Physical review letters, 124(25), 251102.

Greiner, J., Burgess, J. M., Savchenko, V., & Yu, H.-F. (2016). On the fermi-gbm event 0.4 s after gw150914. The Astrophysical Journal Letters, 827(2), L38.

Gwcelery documentation. (2021). https://igwn.readthedocs.io/projects/gwcelery/en/ latest/gwcelery.conf.html. (accessed 01-June-2021)

Hamburg, R., Fletcher, C., Burns, E., Goldstein, A., Bissaldi, E., Briggs, M., . . . others (2020). A joint fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs. The Astrophysical Journal, 893(2), 100.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., . . . others (2020). Array programming with numpy. Nature, 585(7825), 357–362.

Howell, E., Ackley, K., Rowlinson, A., & Coward, D. (2019). Joint gravitational wave–gamma-ray burst detection rates in the aftermath of gw170817. Monthly Notices of the Royal Astronomical Society, 485(1), 1435–1447.

Nitz, A. H., Nielsen, A. B., & Capano, C. D. (2019). Potential gravitational-wave and gamma-ray multi-messenger candidate from oct. 30, 2015. arXiv preprint arXiv:1902.09496.

Oliphant, T. E. (2006). A guide to NumPy (Vol. 1). Trelgol Publishing USA.

Paczynski, B. (1986). Gamma-ray bursters at cosmological distances. The Astrophysical Journal, 308, L43–L46.

Piotrzkowski, B. J., Baylor, A., & Magan ̃a-Hernandez, I. (2021). A joint ranking statistic for multi-messenger astronomical searches with gravitational waves. In prep.

Price-Whelan, A. M., Sipo ̋cz, B., Gu ̈nther, H., Lim, P., Crawford, S., Conseil, S., ... others (2018). The astropy project: Building an open-science project and status of the v2. 0 core package. The Astronomical Journal, 156(3), 123.

Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., . . . others (2013). Astropy: A community python package for astronomy. Astronomy & Astrophysics, 558, A33.

Sachdev, S., Caudill, S., Fong, H., Lo, R. K., Messick, C., Mukherjee, D., . . . others (2019). The gstlal search analysis methods for compact binary mergers in advanced ligo’s second and advanced virgo’s first observing runs. arXiv preprint arXiv:1901.08580.

Singer, L. P., Price, L. R., Farr, B., Urban, A. L., Pankow, C., Vitale, S., . . . others (2014). The first two years of electromagnetic follow-up with advanced ligo and virgo. The Astrophysical Journal, 795(2), 105.

Stachie, C., Canton, T. D., Burns, E., Christensen, N., Hamburg, R., Briggs, M., ... others (2020). Search for advanced ligo single interferometer compact binary coalescence signals in coincidence with gamma-ray events in fermi-gbm. arXiv preprint arXiv:2001.01462.

Urban, A. L. (2016). Monsters in the dark: High energy signatures of black hole formation with multimessenger astronomy (Unpublished doctoral dissertation). University of Wisconsin-Milwaukee.

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 22.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . . Contributors, S. . . (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. doi: https://doi.org/10.1038/s41592-019-0686-2

Downloads

Published

2022-02-25

How to Cite

Piotrzkowski, B. (2022). Testing Ranking Statistics for Joint Gravitational Wave and Gamma-Ray Burst Searches. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.350

Issue

Section

Astronomy and Cosmology