The Role of Radiation in Common Envelope Evolution

Logan J. Prust


The common envelope phase in binary star systems is simulated using the 3-D moving-mesh hydrodynamic code MANGA. The radiation hydrodynamics module in MANGA is modified using a sub-cycling algorithm to skip unnecessary calculations. The sub-cycling as well as other optimizations reduce computation time by a factor of 3. The generation of appropriate initial conditions for radiation hydrodynamic simulations is discussed.


Hydrodynamics; Binaries; Numerical Methods; Radiation

Full Text:



Chang, P; Davis, SW; Jiang, YF. “Time-dependent radiation hydrodynamics on a moving mesh,”MNRAS, v. 493(4),2020, p. 5397–5407.

Chang, P; Wadsley, J; Quinn, T. “A Moving Mesh Hydrodynamics Solver for ChaNGa,”accepted to MNRAS, 2017Gonz ́alez, M; Audit, E; Huynh, P. “HERACLES: a three-dimensional radiation hydrodynamics code,”A&A, v. 464(2),2007, p. 429–435.

Ivanova, N; Justham, S; Chen, X; De Marco, O; Fryer, CL; Gaburov, E; Ge, H; Glebbeek, E; Han, Z; Li, XD; Lu,G; Marsh, T; Podsiadlowski, P; Potter, A; Soker, N; Taam, R; Tauris, TM; van den Heuvel, EPJ; Webbink, RF.“Common envelope evolution: where we stand and how we can move forward,”A&A Rev., v. 21, 2013, p. 59.

Jetley, P; Gioachin, F; Mendes, C; Kale, LV; Quinn, TR. “”massively parallel cosmological simulations with changa”,”Proceedings of IEEE International Parallel and Distributed Processing Symposium, 2008

Jetley, P; Wesolowski, F; Gioachin, F; Kale, LV; Quinn, TR. “”scaling hierarchical n-body simulations on gpu clus-ters”,”Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, 2010

Jiang, YF. “An Implicit Finite Volume Scheme to Solve the Time-dependent Radiation Transport Equation Based onDiscrete Ordinates,”ApJS, v. 253(2), 2021, p. 49.

Jiang, YF; Stone, JM; Davis, SW. “An Algorithm for Radiation Magnetohydrodynamics Based on Solving the Time-dependent Transfer Equation,”ApJS, v. 213(1), 2014, p. 7.

Kannan,R; Vogelsberger,M; Marinacci,F; McKinnon,R; Pakmor,R; Springel,V. “AREPO-RT:radiationhydrodynamicsonamovingmesh,”MNRAS,v.485(1),2019,p.117–149.

MacLeod, M; Ostriker, EC; Stone, JM. “Runaway Coalescence at the Onset of Common Envelope Episodes,”ApJ, v.863, 2018, p. 5.

Menon, H; Wesolowski, L; Zheng, G; Jetley, P; Kale, L; Quinn, T; Governato, F. “Adaptive techniques forclustered N-body cosmological simulations,”Computational Astrophysics and Cosmology, v. 2, 2015, p. 1.

Nandez, JLA; Ivanova, N; Lombardi, JC. “Recombination energy in double white dwarf formation,”MNRAS, v. 450,2015, p. L39–L43.

Nelemans, G; Verbunt, F; Yungelson, LR; Portegies Zwart, SF. “Reconstructing the evolution of dou-ble helium white dwarfs:envelope loss without spiral-in,”A&A, v. 360, 2000, p. 1011–1018.

Passy, JC; De Marco, O; Fryer, CL; Herwig, F; Diehl, S; Oishi, JS; Mac Low, MM; Bryan, GL; Rockefeller, G.“Simulating the Common Envelope Phase of a Red Giant Using Smoothed-particle Hydrodynamics and Uniform-grid Codes,”ApJ, v. 744, 2012, p. 52.

Paxton, B; Bildsten, L; Dotter, A; Herwig, F; Lesaffre, P; Timmes, F. “Modules for Experiments in Stellar Astro-physics (MESA),”ApJS, v. 192, 2011, p. 3.

Paxton, B; Cantiello, M; Arras, P; Bildsten, L; Brown, EF; Dotter, A; Mankovich, C; Montgomery, MH; Stello,D; Timmes, FX; Townsend, R. “Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations,Rotation, and Massive Stars,”ApJS, v. 208, 2013, p. 4.

Paxton, B; Marchant, P; Schwab, J; Bauer, EB; Bildsten, L; Cantiello, M; Dessart, L; Farmer, R; Hu, H; Langer, N;Townsend, RHD; Townsley, DM; Timmes, FX. “Modules for Experiments in Stellar Astrophysics (MESA): Bina-ries, Pulsations, and Explosions,”ApJS, v. 220, 2015, p. 15.

Paxton, B; Schwab, J; Bauer, EB; Bildsten, L; Blinnikov, S; Duffell, P; Farmer, R; Goldberg, JA; Marchant,P; Sorokina, E; Thoul, A; Townsend, RHD; Timmes, FX. “Modules for Experiments in Stellar Astrophysics(MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions,”ApJS, v. 234(2), 2018, p. 34.

Paxton, B; Smolec, R; Schwab, J; Gautschy, A; Bildsten, L; Cantiello, M; Dotter, A; Farmer, R; Goldberg, JA;Jermyn, AS; Kanbur, SM; Marchant, P; Thoul, A; Townsend, RHD; Wolf, WM; Zhang, M; Timmes, FX. “Modulesfor Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, andEnergy Conservation,”ApJS, v. 243(1), 2019, p. 10.

Prust, LJ; Chang, P. “Common envelope evolution on a moving mesh,”MNRAS, v. 486(4), 2019, p. 5809–5818.

Ricker, PM; Taam, RE. “An AMR Study of the Common-envelope Phase of Binary Evolution,”ApJ, v. 746, 2012,p. 74.

Sabach, E; Hillel, S; Schreier, R; Soker, N. “Energy transport by convection in the common envelope evolution,”MNRAS, v. 472, 2017, p. 4361–4367.

Saitoh, TR; Makino, J. “A Necessary Condition for Individual Time Steps in SPH Simulations,”ApJ, v. 697, 2009, p.L99–L102.

Springel, V. “E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh,”MN-RAS, v. 401, 2010, p. 791–851.

Turk, MJ; Smith, BD; Oishi, JS; Skory, S; Skillman, SW; Abel, T; Norman, ML. “yt: A Multi-code AnalysisToolkit for Astrophysical Simulation Data,”The Astrophysical Journal Supplement Series, v. 192, 2011, p. 9.

Webbink, RF. “Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae,”ApJ, v. 277,1984, p. 355–360.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.