Moving Boundaries in Common Envelope Evolution

Authors

DOI:

https://doi.org/10.17307/wsc.v1i1.327

Keywords:

Hydrodynamics, Binary Stars, Stellar Interactions

Abstract

The common envelope phase in binary star systems is simulated using the 3-D moving-mesh hydrodynamic code MANGA. The companion object is modeled as a moving boundary condition in our simulations. We outline the methodology of implementing moving boundary conditions into MANGA, which are reactive to hydrodynamic and gravitational forces. The generation of initial conditions for our simulations is discussed, which must be modified near the location of the companion. We show that the size of the companion has a significant effect on the dynamics of the spiral-in, particularly with regard to the orbital separation and eccentricity. We note that our results are sensitive to the spatial resolution of our simulations. We conclude that the finite size of the companion object must be taken into account in future simulations of common envelope evolution.

References

Chang, P; Wadsley, J; Quinn, T. “A Moving Mesh Hydrodynamics Solver for ChaNGa,”accepted to MNRAS, 2017

Einfeldt, B. “On Godunov-Type Methods for Gas Dynamics,”SIAM Journal on Numerical Analysis, v. 25(2), 1988,p. 294–318. https://ui.adsabs.harvard.edu/abs/1988SJNA...25..294E

Glanz, H; Perets, HB. “Efficient common-envelope ejection through dust-driven winds,”MNRAS, v. 478, 2018, p.L12–L17. https://ui.adsabs.harvard.edu/abs/2018MNRAS.478L..12G

Ivanova, N; Justham, S; Chen, X; De Marco, O; Fryer, CL; Gaburov, E; Ge, H; Glebbeek, E; Han, Z; Li, XD; Lu,G; Marsh, T; Podsiadlowski, P; Potter, A; Soker, N; Taam, R; Tauris, TM; van den Heuvel, EPJ; Webbink, RF.“Common envelope evolution: where we stand and how we can move forward,”A&A Rev., v. 21, 2013, p. 59.http://ukads.nottingham.ac.uk/abs/2013A%26ARv..21...59I

Jetley, P; Gioachin, F; Mendes, C; Kale, LV; Quinn, TR. “”massively parallel cosmological simulations with changa”,”Proceedings of IEEE International Parallel and Distributed Processing Symposium, 2008

Jetley, P; Wesolowski, F; Gioachin, F; Kale, LV; Quinn, TR. “”scaling hierarchical n-body simulations on gpu clusters”,”Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, 2010

L ́opez-C ́amara, D; DeColle, F; Moreno M ́endez, E. “Self-regulating jets during the Common Envelope phase,” preprint (arXiv:1806.11115), 2018, p. arXiv:1806.11115. https://ui.adsabs.harvard.edu/abs/2018arXiv180611115L

MacLeod, M; Antoni, A; Murguia-Berthier, A; Macias, P; Ramirez-Ruiz, E. “Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within StellarEnvelopes,”ApJ, v. 838, 2017, p. 56. https://ui.adsabs.harvard.edu/abs/2017ApJ...838...56M

MacLeod, M; Ostriker, EC; Stone, JM. “Runaway Coalescence at the Onset of Common Envelope Episodes,”ApJ, v.863, 2018, p. 5. https://ui.adsabs.harvard.edu/#abs/2018ApJ...863....5M

Menon, H; Wesolowski, L; Zheng, G; Jetley, P; Kale, L; Quinn, T; Governato, F. “Adaptive techniques forclustered N-body cosmological simulations,”Computational Astrophysics and Cosmology, v. 2, 2015, p. 1.http://adsabs.harvard.edu/abs/2015ComAC...2....1M

Nandez, JLA; Ivanova, N; Lombardi, JC. “Recombination energy in double white dwarf formation,”MNRAS, v. 450,2015, p. L39–L43. http://adsabs.harvard.edu/abs/2015MNRAS.450L..39N

Nelemans, G; Verbunt, F; Yungelson, LR; Portegies Zwart, SF. “Reconstructing the evolution of dou-ble helium white dwarfs:envelope loss without spiral-in,”A&A, v. 360, 2000, p. 1011–1018.http://adsabs.harvard.edu/abs/2000A%26A...360.1011N

Passy, JC; De Marco, O; Fryer, CL; Herwig, F; Diehl, S; Oishi, JS; Mac Low, MM; Bryan, GL; Rockefeller, G.“Simulating the Common Envelope Phase of a Red Giant Using Smoothed-particle Hydrodynamics and Uniform-grid Codes,”ApJ, v. 744, 2012, p. 52. http://adsabs.harvard.edu/abs/2012ApJ...744...52P

Paxton, B; Bildsten, L; Dotter, A; Herwig, F; Lesaffre, P; Timmes, F. “Modules for Experiments in Stellar Astro-physics (MESA),”ApJS, v. 192, 2011, p. 3. http://adsabs.harvard.edu/abs/2011ApJS..192....3P

Paxton, B; Cantiello, M; Arras, P; Bildsten, L; Brown, EF; Dotter, A; Mankovich, C; Montgomery, MH; Stello,D; Timmes, FX; Townsend, R. “Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations,Rotation, and Massive Stars,”ApJS, v. 208, 2013, p. 4. http://adsabs.harvard.edu/abs/2013ApJS..208....4P

Paxton, B; Marchant, P; Schwab, J; Bauer, EB; Bildsten, L; Cantiello, M; Dessart, L; Farmer, R; Hu, H; Langer, N;Townsend, RHD; Townsley, DM; Timmes, FX. “Modules for Experiments in Stellar Astrophysics (MESA): Bina-ries, Pulsations, and Explosions,”ApJS, v. 220, 2015, p. 15. http://adsabs.harvard.edu/abs/2015ApJS..220...15P

Paxton, B; Schwab, J; Bauer, EB; Bildsten, L; Blinnikov, S; Duffell, P; Farmer, R; Goldberg, JA; Marchant,P; Sorokina, E; Thoul, A; Townsend, RHD; Timmes, FX. “Modules for Experiments in Stellar Astrophysics(MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions,”ApJS, v. 234(2), 2018, p. 34.https://ui.adsabs.harvard.edu/abs/2018ApJS..234...34P

Paxton, B; Smolec, R; Schwab, J; Gautschy, A; Bildsten, L; Cantiello, M; Dotter, A; Farmer, R; Goldberg, JA;Jermyn, AS; Kanbur, SM; Marchant, P; Thoul, A; Townsend, RHD; Wolf, WM; Zhang, M; Timmes, FX. “Modulesfor Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, andEnergy Conservation,”ApJS, v. 243(1), 2019, p. 10. https://ui.adsabs.harvard.edu/abs/2019ApJS..243...10P

Prust, LJ. “Moving and reactive boundary conditions in moving-mesh hydrodynamics,”MNRAS, v. 494(4), 2020, p.4616–4626. https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4616P

Prust, LJ; Chang, P. “Common envelope evolution on a moving mesh,”MNRAS, v. 486(4), 2019, p. 5809–5818.https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.5809P

Ricker, PM; Taam, RE. “An AMR Study of the Common-envelope Phase of Binary Evolution,”ApJ, v. 746, 2012,p. 74. http://adsabs.harvard.edu/abs/2012ApJ...746...74R

Springel, V. “E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh,”MN-RAS, v. 401, 2010, p. 791–851. http://adsabs.harvard.edu/abs/2010MNRAS.401..791S

Toro, EF; Spruce, M; Speares, W. “Restoration of the contact surface in the HLL-Riemann solver,”Shock Waves,v. 4(1), 1994, p. 25–34. https://ui.adsabs.harvard.edu/abs/1994ShWav...4...25T

Turk, MJ; Smith, BD; Oishi, JS; Skory, S; Skillman, SW; Abel, T; Norman, ML. “yt: A Multi-code AnalysisToolkit for Astrophysical Simulation Data,”The Astrophysical Journal Supplement Series, v. 192, 2011, p. 9.http://adsabs.harvard.edu/abs/2011ApJS..192....9T

Wan, Y; Zhong, C. “An ALE-type discrete unified gas kinetic scheme for low-speed continuum andrarefied flow simulations with moving boundaries,”arXiv e-prints,2019,p. arXiv:1906.01813.https://ui.adsabs.harvard.edu/abs/2019arXiv190601813W

Webbink, RF. “Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae,”ApJ, v. 277,1984, p. 355–360. http://adsabs.harvard.edu/abs/1984ApJ...277..355W

Downloads

Published

2022-02-25

How to Cite

Prust, L. J. (2022). Moving Boundaries in Common Envelope Evolution. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.327

Issue

Section

Astronomy and Cosmology