Common Envelope Evolution on a Moving Mesh
Abstract
Keywords
Full Text:
PDFReferences
Chamandy, L; Blackman, EG; Frank, A; Carroll-Nellenback, J; Zou, Y; Tu, Y. “How Drag Force Evolves in Global Common Envelope Simulations,” arXiv e-prints, 2019, p. arXiv:1908.06195. https://ui.adsabs.harvard.edu/abs/2019arXiv190806195C
Chang, P; Wadsley, J; Quinn, T. “A Moving Mesh Hydrodynamics Solver for ChaNGa,” accepted to MNRAS, 2017
De, S; MacLeod, M; Everson, RW; Antoni, A; Mandel, I; Ramirez-Ruiz, E. “Common Envelope Wind Tunnel: The Effects of Binary Mass Ratio and Implications for the Accretion-Driven Growth of LIGO Binary Black Holes,” arXiv e-prints, 2019, p. arXiv:1910.13333. https://ui.adsabs.harvard.edu/abs/2019arXiv191013333D
Gianninas, A; Dufour, P; Kilic, M; Brown, WR; Bergeron, P; Hermes, JJ. “Precise Atmospheric Parameters for the Shortest-period Binary White Dwarfs: Gravitational Waves, Metals, and Pulsations,” ApJ, v. 794, 2014, p. 35. https://ui.adsabs.harvard.edu/#abs/2014ApJ...794...35G
Glanz, H; Perets, HB. “Efficient common-envelope ejection through dust-driven winds,” MNRAS, v. 478, 2018, p. L12–L17. https://ui.adsabs.harvard.edu/abs/2018MNRAS.478L..12G
Ivanova, N. “Common envelope: progress and transients,” preprint (arXiv:1706.07580), 2017. http://adsabs.harvard.edu/abs/2017arXiv170607580I
—. “On the Use of Hydrogen Recombination Energy during Common Envelope Events,” ApJ, v. 858, 2018, p. L24. https://ui.adsabs.harvard.edu/abs/2018ApJ...858L..24I
Ivanova, N; Justham, S; Chen, X; De Marco, O; Fryer, CL; Gaburov, E; Ge, H; Glebbeek, E; Han, Z; Li, XD; Lu, G; Marsh, T; Podsiadlowski, P; Potter, A; Soker, N; Taam, R; Tauris, TM; van den Heuvel, EPJ; Webbink, RF. “Common envelope evolution: where we stand and how we can move forward,” A&A Rev., v. 21, 2013, p. 59. http://ukads.nottingham.ac.uk/abs/2013A%26ARv..21...59I
Jetley, P; Gioachin, F; Mendes, C; Kale, LV; Quinn, TR. “”massively parallel cosmological simulations with changa”,” Proceedings of IEEE International Parallel and Distributed Processing Symposium, 2008
Jetley, P; Wesolowski, F; Gioachin, F; Kale, LV; Quinn, TR. “”scaling hierarchical n-body simulations on gpu clus- ters”,” Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, 2010
Lecoanet, D; McCourt, M; Quataert, E; Burns, KJ; Vasil, GM; Oishi, JS; Brown, BP; Stone, JM; O’Leary, RM. “A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics,” MNRAS, v. 455, 2016, p. 4274–4288. http://adsabs.harvard.edu/abs/2016MNRAS.455.4274L
Livio, M; Soker, N. “The common envelope phase in the evolution of binary stars,” ApJ, v. 329, 1988, p. 764–779. http://adsabs.harvard.edu/abs/1988ApJ...329..764L
Lo ́pez-Ca ́mara, D; De Colle, F; Moreno Me ́ndez, E. “Self-regulating jets during the Com- mon Envelope phase,” preprint (arXiv:1806.11115), 2018, p. arXiv:1806.11115. https://ui.adsabs.harvard.edu/abs/2018arXiv180611115L
MacLeod, M; Antoni, A; Murguia-Berthier, A; Macias, P; Ramirez-Ruiz, E. “Common Envelope Wind Tunnel: Coef- ficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes,” ApJ, v. 838, 2017, p. 56. https://ui.adsabs.harvard.edu/abs/2017ApJ...838...56M
MacLeod, M; Ostriker, EC; Stone, JM. “Runaway Coalescence at the Onset of Common Envelope Episodes,” ApJ, v. 863, 2018, p. 5. https://ui.adsabs.harvard.edu/#abs/2018ApJ...863....5M
Menon, H; Wesolowski, L; Zheng, G; Jetley, P; Kale, L; Quinn, T; Governato, F. “Adaptive techniques for clustered N-body cosmological simulations,” Computational Astrophysics and Cosmology, v. 2, 2015, p. 1. http://adsabs.harvard.edu/abs/2015ComAC...2....1M
Nandez, JLA; Ivanova, N; Lombardi, JC. “Recombination energy in double white dwarf formation,” MNRAS, v. 450, 2015, p. L39–L43. http://adsabs.harvard.edu/abs/2015MNRAS.450L..39N
Nelemans, G; Verbunt, F; Yungelson, LR; Portegies Zwart, SF. “Reconstructing the evolution of double helium white dwarfs: envelope loss without spiral-in,” A&A, v. 360, 2000, p. 1011–1018. http://adsabs.harvard.edu/abs/2000A%26A...360.1011N
Ohlmann, ST; Ro ̈pke, FK; Pakmor, R; Springel, V. “Hydrodynamic Moving-mesh Simulations of the Common Envelope Phase in Binary Stellar Systems,” ApJ, v. 816, 2016, p. L9. http://adsabs.harvard.edu/abs/2016ApJ...816L...9O
Passy, JC; De Marco, O; Fryer, CL; Herwig, F; Diehl, S; Oishi, JS; Mac Low, MM; Bryan, GL; Rockefeller, G. “Simulating the Common Envelope Phase of a Red Giant Using Smoothed-particle Hydrodynamics and Uniform- grid Codes,” ApJ, v. 744, 2012, p. 52. http://adsabs.harvard.edu/abs/2012ApJ...744...52P
Paxton, B; Bildsten, L; Dotter, A; Herwig, F; Lesaffre, P; Timmes, F. “Modules for Experiments in Stellar Astro- physics (MESA),” ApJS, v. 192, 2011, p. 3. http://adsabs.harvard.edu/abs/2011ApJS..192....3P
Paxton, B; Cantiello, M; Arras, P; Bildsten, L; Brown, EF; Dotter, A; Mankovich, C; Montgomery, MH; Stello, D; Timmes, FX; Townsend, R. “Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars,” ApJS, v. 208, 2013, p. 4. http://adsabs.harvard.edu/abs/2013ApJS..208....4P
Paxton, B; Marchant, P; Schwab, J; Bauer, EB; Bildsten, L; Cantiello, M; Dessart, L; Farmer, R; Hu, H; Langer, N; Townsend, RHD; Townsley, DM; Timmes, FX. “Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions,” ApJS, v. 220, 2015, p. 15. http://adsabs.harvard.edu/abs/2015ApJS..220...15P
Paxton, B; Schwab, J; Bauer, EB; Bildsten, L; Blinnikov, S; Duffell, P; Farmer, R; Goldberg, JA; Marchant, P; Sorokina, E; Thoul, A; Townsend, RHD; Timmes, FX. “Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions,” ApJS, v. 234(2), 2018, p. 34. https://ui.adsabs.harvard.edu/abs/2018ApJS..234...34P
Paxton, B; Smolec, R; Schwab, J; Gautschy, A; Bildsten, L; Cantiello, M; Dotter, A; Farmer, R; Goldberg, JA; Jermyn, AS; Kanbur, SM; Marchant, P; Thoul, A; Townsend, RHD; Wolf, WM; Zhang, M; Timmes, FX. “Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation,” ApJS, v. 243(1), 2019, p. 10. https://ui.adsabs.harvard.edu/abs/2019ApJS..243...10P
Prust, LJ; Chang, P. “Common envelope evolution on a moving mesh,” MNRAS, v. 486(4), 2019, p. 5809–5818. https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.5809P
Ricker, PM; Taam, RE. “An AMR Study of the Common-envelope Phase of Binary Evolution,” ApJ, v. 746, 2012, p. 74. http://adsabs.harvard.edu/abs/2012ApJ...746...74R
Sabach, E; Hillel, S; Schreier, R; Soker, N. “Energy transport by convection in the common envelope evolution,” MNRAS, v. 472, 2017, p. 4361–4367. https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.4361S
Sandquist, EL; Taam, RE; Chen, X; Bodenheimer, P; Burkert, A. “Double Core Evolution. X. Through the Envelope Ejection Phase,” ApJ, v. 500, 1998, p. 909–922. http://ukads.nottingham.ac.uk/abs/1998ApJ...500..909S
Soker, N. “What Planetary Nebulae Can Tell Us about Planetary Systems,” ApJ, v. 460, 1996, p. L53. https://ui.adsabs.harvard.edu/#abs/1996ApJ...460L..53S
Soker, N; Grichener, A; Sabach, E. “Radiating the hydrogen recombination energy during common envelope evolution,” preprint (arXiv:1805.08543), 2018, p. arXiv:1805.08543. https://ui.adsabs.harvard.edu/abs/2018arXiv180508543S
Springel, V. “E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh,” MN- RAS, v. 401, 2010, p. 791–851. http://adsabs.harvard.edu/abs/2010MNRAS.401..791S
Terman, JL; Taam, RE; Hernquist, L. “Double-core evolution. 5: Three-dimensional effects in the merger of a red giant with a dwarf companion,” ApJ, v. 422, 1994, p. 729–736. http://ukads.nottingham.ac.uk/abs/1994ApJ...422..729T
Toro, E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer Berlin Heidelberg, ISBN 9783540498346, 2009
Turk, MJ; Smith, BD; Oishi, JS; Skory, S; Skillman, SW; Abel, T; Norman, ML. “yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data,” The Astrophysical Journal Supplement Series, v. 192, 2011, p. 9. http://adsabs.harvard.edu/abs/2011ApJS..192....9T
Webbink, RF. “Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae,” ApJ, v. 277, 1984, p. 355–360. http://adsabs.harvard.edu/abs/1984ApJ...277..355W
Zhu, C; Pakmor, R; van Kerkwijk, MH; Chang, P. “Magnetized Moving Mesh Merger of a Carbon-Oxygen White Dwarf Binary,” ApJ, v. 806, 2015, p. L1. http://adsabs.harvard.edu/abs/2015ApJ...806L...1Z
DOI: https://doi.org/10.17307/wsc.v1i1.306
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.