Designing Mars Missions for the Utilization of Rotorcraft

Authors

  • Sophie R Gelhar University of Wisconsin - Stout

DOI:

https://doi.org/10.17307/wsc.v1i1.302

Keywords:

Mars, Rotorcraft, Mission Design,

Abstract

Following the technical demonstration of the Mars Helicopter on the Mars 2020 mission, interest in further exploration of Mars utilizing rotorcraft is expected to increase. Previously, scientific exploration has been limited by the resolution of instruments on satellites and the terrain a rover can traverse. Rotorcraft enable exploration in previously inaccessible locations with increased efficiency compared to rovers and improved resolution (compared to satellites). This paper describes missions designed to utilize the unique capabilities of rotorcraft in order to advance the science performed extraterrestrially. For Mars this includes tasks such as determining if Mars ever supported life, understanding climate processes and history, determining the evolution of Martian geology, and preparing for human exploration. The missions fall into three general categories: rover assistance, sample collection, and data collection. Complimentary concept
vehicles are also discussed. This paper is meant to serve as a reference, resource, and starting point for the future exploration of Mars with rotorcraft.

Author Biography

Sophie R Gelhar, University of Wisconsin - Stout

Sophie Gelhar is a Junior at the University of Wisconsin - Stout in the Mechanical Engineering program.

References

Vision and voyages, Washington, D.C.: National Academies Press, 2011.

Williams, D. (2019). Mars Fact Sheet. [online] Nssdc.gsfc.nasa.gov. Available at:

https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html [Accessed 29 Jul. 2019].

Petculescu, A., and Lueptow, R., "Atmospheric acoustics of Titan, Mars, Venus, and Earth", Icarus, Vol. 186, No. 2, 2007, pp. 413-419, doi: 10.1016/j.icarus.2006.09.014

"Mars Facts | All About Mars – NASA’s Mars Exploration Program", NASA’s Mars Exploration Program Available: https://mars.nasa.gov/all-aboutmars/facts/#?c=inspace&s=distance.

"Mars Exploration Rover Mission: Spotlight", Mars.nasa.gov Available:

https://mars.nasa.gov/mer/spotlight/20070612.html.

"Lithium titanate (LTO) battery pack manufacturer | Large Power| Large Power", Lithiumionbatterypack.com Available: http://www.lithiumion-batterypack.com/low-temperaturebattery.

html.

Lamarre, O., and Kelly, J., "Overcoming the Challenges of Solar Rover Autonomy: Enabling Long-Duration Planetary Navigation", arXiv e-prints, 2018.

Balaram, B., Canham, T., Duncan, C., Grip, H. F., Johnson, W., Maki, J., Quon, A., Stern, R., and Zhu, D., “Mars Helicopter Technology Demonstrator,” 2018 AIAA Atmospheric Flight Mechanics Conference, January 2018, doi:10.2514/6.2018-0023.

Lorenz R.D., Turtle E.P., Barnes J.W., Trainer M.G., Adams D.S., Hibbard K.E., Sheldon C.Z., Zacny K., Peplowski P.N., Lawrence D.J., Ravine M.A., McGee T.G., Sotzen K.S., MacKenzie S.M., Langelaan J.W., Schmitz S., Wolfarth L.S., Bedini P.D., “Dragonfly: a rotorcraft lander concept for scientific exploration at Titan,”2018 Johns Hopkins APL Technical Digest, Volume 34, Number 3 pp. 374-38

MEPAG (2018), Mars Scientific Goals, Objectives, Investigations, and Priorities: 2018. D. Banfield, ed., 81 p. white paper posted October, 2018 by the Mars Exploration Program Analysis Group (MEPAG) at https://mepag.jpl.nasa.gov/reports.cfm

Grant, J. A., Golombek, M. P., Grotzinger, J. P., Wilson, S. A., Watkins, M. M., Vasavada, A. R., Griffes, J. L., and Parker, T. J., “The science process for selecting the landing site for the 2011 Mars Science Laboratory,” Planetary and Space Science, Vol. 59, No. 11–12, 2011, pp.1114-1127, doi: 10.1016/j.pss.2010.06.016.

Farley, K. A., and Williford, K. H., “Mars 2020 landing site down-select,” Received by Michael Meyer, 13 February 2017.

Grant, J. A., Golombek, M. P., Wilson, S. A., Farley, K. A., Williford, K. H., and Chen, A., “The science process for selecting the landing site for the 2020 Mars rover,” Planetary and Space Science, Vol. 164, Dec 2018, pp. 106-126, doi: 10.1016/j.pss.2018.07.001.

Cushing, G. E., Titus, T. N., Wynne, J. J., and Christensen, P. R., “THEMIS observes possible cave skylights on Mars,” Geophys. Res. Lett., Vol. 34, L17201, 2007, doi:10.1029/2007GL030709.

Léveillé, R. J., and Datta, S., “Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review,” Planetary and Space Science, Vol. 58, No. 4, 2010, pp. 592-598, doi: 10.1016/j.pss.2009.06.004.

Williams, K.E., McKay, C. P., Toon, O.B., and Head, J. W., “Do ice caves exist on Mars?,” Icarus, Vol. 209, No. 2, 2010, pp. 358-368, doi:10.1016/j.icarus.2010.03.039.

NASA Mars 2020 Mission, “Mars 2020 Rover Depot Caching Strategy” Available: https://mars.nasa.gov/mars2020/mission/timeline/surface-operations/.

NASA Mars 2020 Mission, “Mars 2020 Mission Contributions to NASA's Mars Exploration Program Science Goal” Available: https://mars.nasa.gov/mars2020/mission/science/goals/#mars2020-goal-1.

Kumar, P. S., Krishna, N., Lakshmi, K. J. P., Raghukanth, S. T. G., Dhabu, A., and Platz, T., “Recent seismicity in Valles Marineris, Mars: Insights from young faults, landslides, boulder falls and possible mud volcanoes,” Earth and Planetary Science Letters, Vol. 505, 2019, pp. 51-

, doi: 10.1016/j.epsl.2018.10.008.

Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P., “Evidence for Precipitation on Mars from Dendritic Valleys in the Valles Marineris Area,” Science, Vol. 305, No. 5680, July 2004, pp. 78-81 doi: 10.1126/science.1097549

Chu, P., Spring, J., and Zacny, K., “ROPEC – ROtary PErcussive Coring Drill for Mars Sample Return,” Proceedings of the 42nd Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center, May 2014.

Honeybee Robotics, “PlanetVac,” Available: https://honeybeerobotics.com/portfolio/planetvac/

Honeybee Robotics, “Nano Drill,” Available: https://honeybeerobotics.com/portfolio/nanodrill/

Chang, C., Wang, J., Chang, C., Liang, M., and Lin, M., "Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies", Chemosphere, Vol. 144, 2016, pp. 484-492. doi: 10.1016/j.chemosphere.2015.08.028

R. Mattingly and L. May, "Mars Sample Return as a campaign," 2011 Aerospace Conference, Big Sky, MT, 2011, pp. 1-13. doi: 10.1109/AERO.2011.5747287

Mars Education at Arizona State University, “Polar Caps”, Available

https://marsed.asu.edu/mep/ice/polar-caps

Roger J.P, et al., “Mars North Polar Deposits: Stratigraphy, Age, and Geodynamical Response,” Science, Vol. 320, No. 5880, 2008, pp. 1182-1185, doi: 10.1126/science.1157546.

NASA, “North Polar Layers of

Mars”, Available: https://www.nasa.gov/multimedia/imagegallery/image_feature_1731.html

Chu, “Researchers calculate size of particle in Martian clouds of CO2

snow,” Available: http://news.mit.edu/2012/co2-snow-on-mars-0619

NASA, “Chasma Boreale,

Mars,” Available: https://www.nasa.gov/multimedia/imagegallery/image_feature_1894.html

NASA Jet Propulsion Laboratory, “NASA Tests Robotic Ice

Tools,” Available: https://www.jpl.nasa.gov/news/news.php?feature=6801

Liu, T., Oyama, A., and Fujii, K., "Scaling Analysis of Propeller-Driven Aircraft for Mars Exploration", Journal of Aircraft, Vol. 50, No. 5, 2013, pp. 1593-1604. doi: 10.2514/1.c032086

"E63 (4.25%) (e63-il)", Airfoiltools.com Available:

http://airfoiltools.com/airfoil/details?airfoil=e63-il.

Santos Fernandes, N., "Design and construction of a multi-rotor with various degrees of freedom", MS, Universidade Tecnica de lisboa, 2011.

[F1] Williams, D. (2019). Mars Fact Sheet. [online] Nssdc.gsfc.nasa.gov. Available at:

https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html [Accessed 29 Jul. 2019].

[F2] NASA, “Mars Helicopter to Fly on NASA’s Next Red Planet Rover Mission,” Available: https://www.nasa.gov/press-release/mars-helicopter-to-fly-on-nasa-s-next-red-planetrover-mission

[F3] John Hopkins APL, Dragonfly moving between study sites on Titan, 2019. Available: https://dragonfly.jhuapl.edu/Gallery/files/images/df-landing.png

[F4] NASA, “Valles Marineris,” Available: https://mars.jpl.nasa.gov/gallery/atlas/vallesmarineris.

html

[F5] NASA, “Tharsis Volcano,” Available: https://mars.nasa.gov/resources/7128/tharsisvolcano/

[F6] Honeybee Robotics, “ROPEC Drill,”

Available: https://honeybeerobotics.com/portfolio/ropec-drill/

[F7] Honeybee Robotics, “Nano Drill,” Available: https://honeybeerobotics.com/portfolio/nanodrill/

[F8] Chang, C., Wang, J., Chang, C., Liang, M., and Lin, M., "Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies", Chemosphere, Vol. 144, 2016, pp. 484-492. doi: 10.1016/j.chemosphere.2015.08.028

[F9] NASA, “North Polar Layers of Mars,”

Available: https://www.nasa.gov/multimedia/imagegallery/image_feature_1731.html

[F10] NASA/JPL, “NASA Tests Robotic Ice Tools,”

Available: https://www.jpl.nasa.gov/news/news.php?feature=6801

[F11] NASA, “Cave Skylights Spotted On Mars,” Available: https://science.nasa.gov/sciencenews/

science-at-nasa/2007/21sep_caves

Downloads

Published

2020-03-16

How to Cite

Gelhar, S. R. (2020). Designing Mars Missions for the Utilization of Rotorcraft. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.302

Issue

Section

Physics and Engineering