Fabrication of ZnO/Graphene Nanocomposite by Ultrasonic Homogenization
DOI:
https://doi.org/10.17307/wsc.v1i1.214Keywords:
Nanocomposites, Nanostructures, ZnO/GrapheneAbstract
Indium tin oxide (ITO) is a commonly used material in the production of transparent conducting films. However, indium is toxic, environmentally unfriendly, and expensive. To remedy this issue, a new material must be developed which can serve as a replacement for ITO. This project utilized commercially available zinc oxide powder and graphene nanoplatelets to manufacture nanocomposite materials through ultrasonic homogenization. To investigate their physical properties, these nanocomposites were then subjected to UV-Vis spectroscopy, particle size analysis, scanning electron microscopy, and X-ray diffractometry. Results indicate that ZnO/Graphene nanocomposites have promising potential as an inexpensive and environmentally friendly transparent conductor.
References
Cummings, K. J., Nakano, M., Omae, K., Takeuchi, K., Chonan, T., Xiao, Y., . . . Kreiss, K. (2012). Indium Lung Disease. Chest,141(6), 1512-1521. doi:10.1378/chest.11-1880
Debanath, M., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116-119. doi:10.1016/j.matlet.2013.08.069
Du, J., Chen, X., Liu, C., Ni, J., Hou, G., Zhao, Y., & Zhang, X. (2014). Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature. Applied Physics A, 117(2), 815-822. doi:10.1007/s00339-014-8436-x
Frenzel, M., Mikolajczak, C., Reuter, M. A., & Gutzmer, J. (2017). Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resources Policy, 52, 327-335. doi:10.1016/j.resourpol.2017.04.008
Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1534. doi:10.1126/science.1158877
Kim, H., Horwitz, J. S., Kushto, G., Piqué, A., Kafafi, Z. H., Gilmore, C. M., & Chrisey, D. B. (2000). Effect of film thickness on the properties of indium tin oxide thin films. Journal of Applied Physics, 88(10), 6021-6025. doi:10.1063/1.1318368
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., . . . Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301. doi:10.1063/1.1992666
Pesika, N. S., Stebe, K. J., & Searson, P. C. (2003). Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals. The Journal of Physical Chemistry B, 107(38), 10412-10415. doi:10.1021/jp0303218
Saleh, S. M., Soliman, A. M., Sharaf, M. A., Kale, V., & Gadgil, B. (2017). Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. Journal of Environmental Chemical Engineering, 5(1), 1219-1226. doi:10.1016/j.jece.2017.02.004
Selvarajan, E., & Mohanasrinivasan, V. (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters, 112, 180-182. doi:10.1016/j.matlet.2013.09.020
Talukdar, Y., Rashkow, J. T., Lalwani, G., Kanakia, S., & Sitharaman, B. (2014). The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials, 35(18), 4863-4877. doi:10.1016/j.biomaterials.2014.02.054
Völz, H. G. (2006). Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a20_243.pub2
Wang, W., Dai, S., Li, X., Yang, J., Srolovitz, D. J., & Zheng, Q. (2015). Measurement of the cleavage energy of graphite. Nature Communications, 6, 7853. doi:10.1038/ncomms8853
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.