Predicting Collisionless Equlibria in Dark Matter Simulations

Authors

  • Robert Ragan University of Wisconsin-La Crosse

DOI:

https://doi.org/10.17307/wsc.v0i0.150

Keywords:

self-gravitation, equilibrium

Abstract

By using a transformation from phase-space variables to a set of orthogonal Hermite-Legendre polynomials, the dynamics of one-dimensional self-gravitating systems has been reduced to a linear set of equations. This transformation changes the long-range forces into local interactions in the new problem.  This makes it possible to determine the steady-state solutions by projecting the initial conditions into the time-independent solutions.

References

Alard C., Colombi S., 2005, MNRAS, 359, 123

Barnes, E. I., Ragan, R. J. 2014, MNRAS, 437, 2340

Barr´e J., Olivetti A., Yamaguchi Y.Y., 2011, J. Phys. A, 44, 405502

Camm G.L., 1950, MNRAS, 110, 305

Clowe D., Bradac M., Gonzalez A.H., Markevitch M., Randall

S.W., Jones C., Zaritsky D., 2006, ApJ, 648, L109

Hansen S.H., Moore B., 2006, New Ast., 11, 333

Lithwick Y., Dalal N, 2011, ApJ, 734, 100

Lynden-Bell, D. 1967, MNRAS, 136, 101

Miller B.N., Rouet J., Le Guirriec E., 2007, Phys. Rev. E, 76, 6705

Navarro J.F., Frenk C.S., White S.D.M., 1997, ApJ, 490, 493

Navarro J.F. et al., 2004, MNRAS, 349, 1039

Ragan, R. J., Mullin, W. J., Wiita, E. B. 2005, J. Low Temp. Phys., 138, 693

Rubin V.C, Ford W.K., 1970, ApJ, 159, 379

Schulz A.E., Dehnen W., Jungman G., Tremaine S., 2013, MNRAS, 431, 49

Spergel D.N. et al., 2003, ApJS, 148, 175

Taylor J., Navarro J., 2001, ApJ, 563, 483

Zwicky F., 1937, ApJ, 86, 217

Downloads

Published

2016-02-11

How to Cite

Ragan, R. (2016). Predicting Collisionless Equlibria in Dark Matter Simulations. Proceedings of the Wisconsin Space Conference. https://doi.org/10.17307/wsc.v0i0.150

Issue

Section

Astronomy and Cosmology