Predicting Collisionless Equlibria in Dark Matter Simulations
DOI:
https://doi.org/10.17307/wsc.v0i0.150Keywords:
self-gravitation, equilibriumAbstract
By using a transformation from phase-space variables to a set of orthogonal Hermite-Legendre polynomials, the dynamics of one-dimensional self-gravitating systems has been reduced to a linear set of equations. This transformation changes the long-range forces into local interactions in the new problem. This makes it possible to determine the steady-state solutions by projecting the initial conditions into the time-independent solutions.
References
Alard C., Colombi S., 2005, MNRAS, 359, 123
Barnes, E. I., Ragan, R. J. 2014, MNRAS, 437, 2340
Barr´e J., Olivetti A., Yamaguchi Y.Y., 2011, J. Phys. A, 44, 405502
Camm G.L., 1950, MNRAS, 110, 305
Clowe D., Bradac M., Gonzalez A.H., Markevitch M., Randall
S.W., Jones C., Zaritsky D., 2006, ApJ, 648, L109
Hansen S.H., Moore B., 2006, New Ast., 11, 333
Lithwick Y., Dalal N, 2011, ApJ, 734, 100
Lynden-Bell, D. 1967, MNRAS, 136, 101
Miller B.N., Rouet J., Le Guirriec E., 2007, Phys. Rev. E, 76, 6705
Navarro J.F., Frenk C.S., White S.D.M., 1997, ApJ, 490, 493
Navarro J.F. et al., 2004, MNRAS, 349, 1039
Ragan, R. J., Mullin, W. J., Wiita, E. B. 2005, J. Low Temp. Phys., 138, 693
Rubin V.C, Ford W.K., 1970, ApJ, 159, 379
Schulz A.E., Dehnen W., Jungman G., Tremaine S., 2013, MNRAS, 431, 49
Spergel D.N. et al., 2003, ApJS, 148, 175
Taylor J., Navarro J., 2001, ApJ, 563, 483
Zwicky F., 1937, ApJ, 86, 217
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.