Testing for wildfire feedbacks in forests of the US Northern Rockies
DOI:
https://doi.org/10.17307/wsc.v1i1.110Keywords:
climate change, forest firesAbstract
Understanding the complex responses of forested landscapes to changing fire regimes is critical for predicting land-cover patterns under a warming climate. Using decades of existing NASA satellite imagery and extensive field-calibration data on burn severity I tested whether successive forest fires in the Northern Rocky Mountains interact through feedbacks, and identified factors that are more likely to lead to two successive high-severity (stand- replacing) fires. Feedbacks among wildfires depended on forest type and interval between the first and second fire. Feedbacks in wildfire severity shifted from negative to positive with increasing elevation and with interval between two fires. Areas characterized by two successive stand-replacing fires were in subalpine forests at higher elevations, shallower slopes, and northeasterly aspects where the interval between fires was longer. Further analyses are underway, and results will identify when and where fire-catalyzed shifts in vegetation are occurring or are likely to occur with continued climate change and altered fire regimes.
References
Adams, M. A. 2013. Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. Forest Ecology and Management 294:250–261.
http://dx.doi.org/10.1016/j.foreco.2012.11.039
Arno, S. F. 1980. Forest fire history in the Northern Rockies. Journal of Forestry 78:460–465.
Baker, W. L. 2009. Fire ecology in Rocky Mountain landscapes. First edition. Island Press, Washington, D.C.
Barrett, S. 1994. Fire Regimes on Andesitic Mountain Terrain in Northeastern Yellowstone-National-Park, Wyoming. International Journal of Wildland Fire 4:65–76.
http://dx.doi.org/10.1071/WF9940065
Barrett, S. W., S. F. Arno, and C. H. Key. 1991. Fire regimes of Western larch - lodgepole pine forests in Glacier National Park, Montana. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 21:1711–1720.
http://dx.doi.org/10.1139/x91-237
Brown, C. D., and J. F. Johnstone. 2012. Once burned, twice shy: Repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. Forest Ecology and Management 266:34–41.
http://dx.doi.org/10.1016/j.foreco.2011.11.006
Collins, B. M., J. D. Miller, A. E. Thode, M. Kelly, J. W. Wagtendonk, and S. L. Stephens. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12:114–128.
http://dx.doi.org/10.1007/s10021-008-9211-7
Dillon, G. K., Z. A. Holden, P. Morgan, M. A. Crimmins, E. K. Heyerdahl, and C. H. Luce. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2:1–33.
http://dx.doi.org/10.1890/ES11-00271.1
Eidenshink, J., B. Schwind, K. Brewer, Z.-L. Zhu, B. Quayle, and S. Howard. 2007. A project for monitoring trends in burn severity. Fire Ecology 3:3–21.
http://dx.doi.org/10.4996/fireecology.0301003
Flannigan, M. D., M. A. Krawchuk, W. J. de Groot, B. M. Wotton, and L. M. Gowman. 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18:483–507.
http://dx.doi.org/10.1071/WF08187
Higuera, P. E., C. Whitlock, and J. A. Gage. 2011. Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA. Holocene 21:327–341.
http://dx.doi.org/10.1177/0959683610374882
Holden, Z. A., P. Morgan, and A. T. Hudak. 2010. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA. Fire Ecology 6:77–85.
http://dx.doi.org/10.4996/fireecology.0603085
LANDFIRE 1.2.0. 2014. Environmental Site Potential layer. U.S. Department of Interior, Geological Survey. [online] Available: http://www.landfire.gov/viewer/ [2014, June 30].
Lentile, L. B., Z. A. Holden, A. M. S. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson. 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15:319– 345.
http://dx.doi.org/10.1071/WF05097
Malak, D. A., and J. G. Pausas. 2006. Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin). International Journal of Wildland Fire 15:407–413.
http://dx.doi.org/10.1071/WF05052
Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell, R. M. Creasy, and J. W. Sherlock. 2009. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113:645–656.
http://dx.doi.org/10.1016/j.rse.2008.11.009
Miller, J. D., H. D. Safford, M. Crimmins, and A. E. Thode. 2008. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 12:16–32.
http://dx.doi.org/10.1007/s10021-008-9201-9
Miller, J. D., C. N. Skinner, H. D. Safford, E. E. Knapp, and C. M. Ramirez. 2011. Trends and causes of severity, size, and number of fires in northwestern California, USA. Ecological Applications 22:184–203.
http://dx.doi.org/10.1890/10-2108.1
Miller, J. D., and A. E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109:66–80.
http://dx.doi.org/10.1016/j.rse.2006.12.006
Morgan, P., E. K. Heyerdahl, and C. E. Gibson. 2008. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA. Ecology 89:717–728.
http://dx.doi.org/10.1890/06-2049.1
Parks, S. A., C. Miller, C. R. Nelson, and Z. A. Holden. 2014. Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas. Ecosystems 17:29–42.
http://dx.doi.org/10.1007/s10021-013-9704-x
Pinno, B. D., R. C. Errington, and D. K. Thompson. 2013. Young jack pine and high severity fire combine to create potentially expansive areas of understocked forest. Forest Ecology and Management 310:517–522.
http://dx.doi.org/10.1016/j.foreco.2013.08.055
R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Romme, W. H., and D. G. Despain. 1989. Historical perspective on the Yellowstone Fires of 1988. BioScience 39:695–699.
http://dx.doi.org/10.2307/1311000
Stephens, S. L., J. K. Agee, P. Z. FuleÌ, M. P. North, W. H. Romme, T. W. Swetnam, and M. G. Turner. 2013. Managing Forests and Fire in Changing Climates. Science 342:41–42.
http://dx.doi.org/10.1126/science.1240294
Thompson, J. R., T. A. Spies, and L. M. Ganio. 2007. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proceedings of the National Academy of Sciences 104:10743 –10748.
http://dx.doi.org/10.1073/pnas.0700229104
Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849.
http://dx.doi.org/10.1890/10-0097.1
Van Wagtendonk, J. W., K. A. van Wagtendonk, and A. E. Thode. 2012. Factors Associated with the Severity of Intersecting Fires in Yosemite National Park, California, USA. Fire Ecology 7:11–31.
http://dx.doi.org/10.4996/fireecology.0801011
Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313:940.
http://dx.doi.org/10.1126/science.1128834
Westerling, A. L., M. G. Turner, E. A. H. Smithwick, W. H. Romme, and M. G. Ryan. 2011. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences 108:13165 –13170.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.