Assessment of Ecosystem Photosynthetic Parameters along Two California Climate Gradients

Authors

  • Sean DuBois University of Wisconsin – Madison Nelson Institute for Environmental Studies

DOI:

https://doi.org/10.17307/wsc.v1i1.103

Keywords:

Reomote Sensing

Abstract

Improving coupled Earth system models of current and future climate requires robust observations that accurately provide parameters and observations for evaluation across spatial scales relevant for the model. Photosynthetic parameters Vcmax and Jmax help to characterize the ability of vegetation to assimilate carbon, a required parameter in most land surface modules of climate models. Remote sensing, flux tower data, and field measurements were collected to develop a methodology to estimate the variability in these parameters across diverse landscapes in Southern California and the Sierras, regions experiencing prolonged drought which is expected to become more common in the future. Vcmax maps were generated with NASA hyperspectral airborne AVIRIS imagery by scaling up leaf level measurements to the canopy and evaluated using flux tower data for nine sites across California. These maps illustrate the expected temporal and spatial changes in the parameter. However, Vcmax estimated from inverse modeling of flux tower data did not fall in the range found in field measurements. The methods developed in this study expand the applicability of imaging spectroscopy in estimating ecosystem metabolism.

References

Baldocchi, D., and T. Meyers (1998), On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective, Agricultural and Forest Meteorology, 90(1-2), 1-25, doi:10.1016/s0168-1923(97)00072-5.

Breshears, D. D., et al. (2005), Regional vegetation die-off in response to global-change-type drought, Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15144-15148, doi:10.1073/pnas.0505734102.

Cook, B. D., et al. (2004), Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA, Agricultural and Forest Meteorology, 126(3-4), 271-295, doi:10.1016/j.agrformet.2004.06.008.

Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey (2005), Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA, Agricultural and Forest Meteorology, 128(1-2), 33-55, doi:10.1016/j.agrformet.2004.09.005.

Drought Monitor (2014), U.S. Drought Monitor California, accessed August 2014 at http://droughtmonitor.unl.edu/Home/StateDroughtMonitor.aspx?C

Eyring, H. (1935), Activated complex in chemical reactions, Journal of Chemical Physics, 3, 107-115, doi:10.1063/1.1749604.

Falge, E., et al. (2001), Gap filling strategies for defensible annual sums of net ecosystem exchange, Agricultural and Forest Meteorology, 107(1), 43-69, doi:10.1016/s0168-1923(00)00225-2.

Farquhar, G. D., and S. v. Caemmerer (1982), Modelling of photosynthetic response to environmental conditions,

Encyclopedia of plant physiology. New series. Volume 12B.

Physiological plant ecology. II. Water relations and carbon assimilation. [Lange, O.L.; Nobel, P.S.; Osmond, C.B.; Ziegler, H. (Editors)], 549- 587.

Farquhar, G. D., S. V. Caemmerer, and J. A. Berry (1980), A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES, Planta, 149(1), 78-90, doi:10.1007/bf00386231.

Goulden, M. L., R. G. Anderson, R. C. Bales, A. E. Kelly, M. Meadows, and G. C. Winston (2012), Evapotranspiration along an elevation gradient in California's Sierra Nevada, Journal of Geophysical Research-Biogeosciences, 117, doi:10.1029/2012jg002027.

Hofmann, D. J., J. H. Butler, E. J. Dlugokencky, J. W. Elkins, K. Masarie, S. A. Montzka, and P. Tans (2006), The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index, Tellus Series B-Chemical and Physical Meteorology, 58(5), 614-619, doi:10.1111/j.1600- 0889.2006.00201.x.

Kelly, A. E., and M. L. Goulden (2008), Rapid shifts in plant distribution with recent climate change, Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11823-11826, doi:10.1073/pnas.0802891105.

Ruimy, A., P. G. Jarvis, D. D. Baldocchi, and B. Saugier (1995), CO 2 fluxes over plant canopies and solar radiation: a review, Advances in Ecological Research, 26, 1-63, doi:10.1016/s0065-2504(08)60063-x.

Serbin, S. P., D. N. Dillaway, E. L. Kruger, and P. A. Townsend (2012), Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature, Journal of Experimental Botany, 63(1), 489- 502, doi:10.1093/jxb/err294.

Serbin, S.P., A. Singh, B.E. McNeil, and P.A. Townsend (2014), Spectroscopic determination of leaf morphological, nutritional, and biochemical traits for northern temperate and boreal tree species, Ecological Applications. doi: 0.1890/13-2110.1.

Vargas, R., et al. (2013), Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta- analysis for Mediterranean Oak Woodlands, Ecosystems, 16(5), 749-764, doi:10.1007/s10021-013-9648-1.

Wolf, A., K. Akshalov, N. Saliendra, D. A. Johnson, and E. A. Laca (2006), Inverse estimation of Vc(max), leaf area index, and the Ball-Berry parameter from carbon and energy fluxes, Journal of Geophysical Research- Atmospheres, 111(D8), 18, doi:10.1029/2005gd005927.

Downloads

Published

2015-01-01

How to Cite

DuBois, S. (2015). Assessment of Ecosystem Photosynthetic Parameters along Two California Climate Gradients. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.103

Issue

Section

Biosciences & Geosciences