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Abstract 
Understanding the environment in which a galaxy resides is crucial to our understanding of galaxy 

evolution. Most galaxies (~70%) live in groups and it is important to develop a quantitative 

understanding of how galaxies are distributed within groups and how groups are distributed in the 

larger scale structure. In addition to the traditional friends-of-friends algorithm, I have applied 

various concepts from networking algorithms to understand the network of galaxy groups in 

clusters, and to understand the substructure within groups. Doing so provides a new method of 

gauging the large scale environments of galaxies and groups, and will result in a more concrete way 

to define a group and to quantify the strength of the community structure that exists.  

 

Background 

Galaxy structures  Galaxies are the fundamental unit of the 

universe, and most reside in groups, seen in Figure 1, or the even 

bigger clusters. Our own Milky Way Galaxy resides in a small group 

of galaxies creatively called the "Local Group".  Approximately 70% 

of galaxies reside in groups, qualitatively defined as a gravitationally 

bound system with a mass of 10
13

 – 10
14

 solar masses, in between that 

of an individual galaxy and a cluster. 

 

The evolution of galaxies occurs in groups. The first step for learning 

about galaxy evolution is to establish what these groups are. The 

environment of a galaxy greatly affects its development, and the 

properties of galaxies, including luminosity, color/morphology and star 

formation rate, depend on their surroundings. 

 

Current group finding techniques  Currently there are several ways of quantitatively 

identifying groups, but these methods do not yield consistent results. In addition, the distribution 

of galaxies within a group is not homogenous; groups themselves can be clumpy. Different 

techniques might identify the clumps as separate groups while another technique would simply 

find the larger group (Fig. 2). Other techniques depend on just looking at the number of bright 

galaxies within a specific radius [10]. 

 

A common technique uses the friends-of-friends (FoF) algorithm [4]. FoF starts with one galaxy 

and then looks for nearby galaxies that satisfy the linking criterion. It then looks at these 

galaxies, iterating until the nearest galaxy exceeds some specified threshold of distance or 

velocity [4]. The galaxy group is then classified as all of the linked galaxies. FoF succeeds at 

finding concentrations of galaxies but falls short in determining where one group of “friends” 

ends and another begins. 

Figure 1: Optical image 

from Sloan Digital Sky 

Survey (SDSS) of a 

galaxy group. 



 

 

 

 

 

 

 

 

Problems with the current methods  While useful, this FoF algorithm cannot 

adequately distinguish between two close groups. Another downfall to the current methods of 

identifying galaxy groups is that the various different techniques yield different sets of groups, 

and many automated group finders identify far too few galaxies as members. For example, most 

of the groups in the recent catalogs consist of only three or four galaxies [1] while nearby groups 

are known to contain tens of galaxies. 

 

Objectives for the current work  Determining which galaxies belong in which group is 

not the only important thing to learn. Knowing how tightly 

linked galaxies are within and between groups will be 

important for figuring out the scales on which galaxy 

interactions occur. Finding the most important spatial scale on 

which the environment influences galaxy evolution is crucial to 

understanding how galaxies evolve. Subgroups indicate that a 

group is dynamically young and, possibly, more susceptible to 

galaxy-galaxy mergers. Determining substructure is important 

for learning if groups are built up of subgroups like clusters are 

built up by groups. 

 

 Science of networks as a solution Simulations of the 

formation of structure in the universe, as shown in Figure 3, 

show that links between galaxies are numerous and 

complicated. Determining the strength of these links and the 

breakage points in which we can definitively say where galaxy 

groups separate is important in learning about the environment 

galaxies live in. What is really needed are observational 

methods to understand how linked galaxies and groups are, and 

Figure 3: This simulation from the 

Millenium Simulation Project [8] 

shows the complicated network of 

galaxies that exists. Bright spots 

indicate areas of high mass, with 

the brightest spots representing 

galaxy groups. The boundaries 

between the galaxies are not well 

defined and there are many 

connections between. 

Figure 2: Image showing contours of neutral 

hydrogen gas with grayscale being optical 

observations from the Digitized Sky Survey. 

This is one group as determined by the FoF 

method but could be broken into two groups 

[3]. 



 

 

that is where this project comes in. The science of networks has been developing algorithmic 

detection methods for determining community structure in various settings for over a decade. 

Seeing what networking algorithms can tell us about the physical world is a very new idea with 

many potential applications. I have applied these techniques to the distribution of galaxies, but 

the applicability could be much broader.  

 

 Networking algorithms  Community structure in networks can be seen across all 

disciplines: natural, social and information sciences [5]. An example is in the case of the popular 

Zachary’s Karate Club network, a benchmark network [5]. In this real-world example, social 

interactions were observed between an American university’s club members, including when the 

club split into two during a dispute between two of the club’s leaders [6]. Algorithms developed 

were able to correctly model these interactions and properly showed a strong natural division 

when the club split. This has been applied to many other data [2], including communities on 

social networking websites such as Facebook (www.facebook.com) as well as analyzing 

individual and group voting dynamics in Congress [5]. Community structure and networks have 

been worked on for a long time in these other disciplines; now we have applied them to 

astronomy! 

 

Methods 

 Modifying friends-of-friends to identify centers of groups I wrote an algorithm that 

works like the traditional friends-of-friends algorithm [4], searching out galaxies that are 

connected to a given “seed“ galaxy through some path of other galaxies that are all linked by a 

given distance. This distance criterion is chosen based on the average separation between the 

galaxies occupying a given area in the data set. My algorithm keeps track of the galaxies found at 

each step away from the seed galaxy. It sums the total number of friends every galaxy has at 

each step, as a measure of how closely connected the group is to the seed galaxy. Outputting the 

results in this way (Figure 4) has provided us with a new way to look at FoF, and be able to use it 

to look for the best central galaxy as a start to finding structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Diagrams showing connections (left) starting with the seed galaxy (bottommost galaxy) and the 

corresponding histogram (right) showing the numbers of “friends” at each step away from the seed galaxy.  
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Interpretation  One example of a galaxy group structure that we have looked at with the 

current algorithm is NGC 2563. Zabludoff & Mulchaey [9] identified well over 20 individual 

galaxies that belong to the group.  The results of our algorithm suggests that NGC 2563 is likely 

two separate groups, with a few galaxies connecting the two, and a few others not being included 

at all. The shape of histograms showing the number of connections at steps away from the “seed” 

galaxy can help identify the best central galaxy. Histograms that peak at one step away and fall 

rapidly indicate good “seeds”, while distributions that are shifted indicate that the galaxy is on 

the outskirts. These histograms for NGC 2563 are shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Distance matrices Many social networking methods use the concept of distance matrices 

to assess community structure. These are matrices of “similarity”, with each element being the 

distance between two sets of nodes (galaxies). Calculating the similarity between galaxies is 

simply how far away they are from each other. The separation in the projection of the sky is easy 

to calculate, but the third dimension is trickier. Velocities and redshifts are used as a measure of 

Figure 5: This shows the outputted histograms from our friends-of-friends algorithm for galaxies located in different 

parts of the group. These histograms show the number of friends that the galaxies at a given step number away from 

the “seed” have, in sum. Good “seed” galaxies at the center of a group peak at one step away and fall off rapidly, 

while galaxies on the edge of the group peak further away. The histogram on the top right shows that a good seed 

galaxy may exist far away from what appears to be the center of the group. This could indicate a separate 

community structure from the main group. We are also able to find outliers, galaxies that do not belong in any 

group. 



 

 

how far away galaxies are from us. To combine velocity with separation in right ascension (RA) 

and declination (Dec) requires a special calculation due to the difference in units. The 3D 

measure of distance that is used is zeta [7], defined in equation 1. 

 

 

 

 

 

 

 

Each element of the distance matrix (Figure 6) is the value of zeta calculated between the 

galaxies associated with that element’s row and column. These values are then quantized on a 

scale related to the average size of a group to correspond to numbers between 0 and 1, with 1 

meaning the two galaxies are extremely close and likely interacting and 0 meaning the galaxies 

are far apart and not interacting. The element corresponding to a galaxies distance from itself is 

assigned to be 0 so as to have a galaxy not appear to be interacting with itself.  

  Gal 1 Gal 2 Gal 3 Gal 4 Gal 5 Gal 6 Gal 7 Gal 8 

Gal 1 0 0.5 0.5 0.8 0.5 0.5 0.5 0.8 

Gal 2 0.5 0 1 0.8 0.8 0.5 0.8 0.5 

Gal 3 0.5 1 0 0.8 0.5 0.5 0.8 0.5 

Gal 4 0.8 0.8 0.8 0 0.5 0.5 0.5 0.8 

Gal 5 0.5 0.8 0.5 0.5 0 0.5 0.5 0.5 

Gal 6 0.5 0.5 0.5 0.5 0.5 0 0.5 1 

Gal 7 0.5 0.8 0.8 0.5 0.5 0.5 0 0.5 

Gal 8 0.8 0.5 0.5 0.8 0.5 1 0.5 0 
 

 

 

 

 

Viewing distance matrices  This matrix can be converted into a grayscale image so that 

it can be easily viewed. The columns are organized by increasing RA and the rows are organized 

by increasing Dec so that the matrix is roughly related to the positions on the sky. Using these 

distance matrix images, we can look for bright areas which indicate groups and look for 

connections between groups. In Figure 7, I made a fake data set with two groups and a “bridge” 

of galaxies connecting them. These two groups show up very clearly in the distance matrix 

image, with elements between galaxies in the same group being bright, and elements between 

galaxies of different groups being dark. The groups are easy to pick out. 

 

Distance matrices for large sections of the sky  Real data sets, such as for a subsection 

of the Abell 1367 Coma Supercluster (Figure 8), are much more complicated. However, it is still 

possible to see structure within the distance matrix. Bright areas indicate groups and gray areas 

suggest structures exist linking the groups. 

 

 

Equation 1: The calculation of zeta, a 3D 

measure of distance between two galaxies.  

Figure 6: Example of a distance matrix, a matrix of values corresponding to how close or far away two 

galaxies are from each other. A 1 implies that galaxies are very close to each other and likely 

interacting while a 0 implies the galaxies are not interacting, with varying values between according to 

the separation. 



 

 

 

 

 

 

 

 

 

 

 

 

Agglomerative Hierarchical Clustering  One networking technique that uses distance 

matrices is hierarchical clustering. This technique iteratively builds a hierarchy of clusters by 

either starting with all nodes (galaxies, in our case) connected in one big group and splitting 

them into separate groups (divisive clustering) or starting with all nodes as separate groups and 

connecting them until they are all in the same group (agglomerative). The agglomerative method 

runs as follows:  

Figure 7: The distance matrix converted into a grayscale image (right) that corresponds to a fake data set 

(left). Here, the group NGC2563 has been duplicated and shifted, with a fake “bridge” of galaxies connecting 

the two. The distance matrix is sorted by RA and Dec and the two separate groups are very apparent as bright 

regions, with a small bridge of points between them. The dark areas consist of elements between two galaxies 

from different groups, which are not interacting.  

Figure 8: Distance matrix image for a subsection of the Abell 1367 Coma Supercluster. This large area of the 

sky contains 383 galaxies and connections are much more complicated than for the fake data set in Figure 7. 

However, bright areas containing groups can still be seen and grey areas suggest linkages between groups. Dark 

areas indicate no galaxy interactions there.  



 

 

1. Assign each galaxy to a separate cluster 

2. Create a distance matrix of the distances between all pairs of galaxies 

3. Merge the two galaxies that are the closest into one cluster 

4. Remove the galaxies from the distance matrix and add in our new cluster 

5. Iterate until all have been merged into one cluster 

 

 Dendrograms  Using the agglomerative hierarchical clustering above, I then create a 

dendrogram. Dendrograms show the order in which galaxies have been merged together in this 

technique (Figure 9).  

 
 

 

 

 

 

The value on the left side of the dendrogram, referred to as the modularity, is a way to quantify 

the value at which structures are merged. This value is simply the value in the distance matrix 

between the two groupings or galaxies. 

 

Conclusions 
Many techniques exist for determining galaxy groups. However, the techniques are not 

consistent and yield different results. These techniques are poor at addressing the following 

questions: 

1. Which galaxies belong in which group? 

2. How tightly linked are galaxies within and between groups? 

Figure 9: Dendrogram showing connections between galaxies in NGC2563. This shows that NGC2563 should 

perhaps be split into two groups, with three outliers not in either group. Outliers are identified by galaxies that 

are connected much higher than the rest. The dendrogram also shows substructure within identified groups. 



 

 

3. What is the most important spatial scale on which the environment influences galaxy 

evolution? 

I have combined various concepts from the science of networks to address these questions. 

 

Using the traditional group-finding friends-of-friends technique, I can identify good “seed” 

galaxies, galaxies that are central to the group. I can also identify galaxies that are on the 

outskirts. Identifying these is important because they will have different properties due to their 

differences in environment. 

 

I can also identify which galaxies belong in which group by looking at the dendrograms in the 

agglomerative hierarchical clustering technique. Using the modularity that the technique uses to 

create the dendrograms, we can quantify levels at which galaxies become connected with each 

other, as well as when groups become connected to each other. We can further identify outliers 

that should not be included in any group. These isolated galaxies will have completely different 

properties than the galaxies that exist in groups. 

 

Next Step  The next step is to combine all of the techniques used to address the third 

question above. By analyzing the results of the various techniques as applied to several different 

groups and clusters, I will look at the spatial scales that affect the properties of galaxies. This 

will lead me to identify the scales on which galaxy evolution occurs.  
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