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ABSTRACT

The current paradigm for understanding galaxy formation in the universe de-

pends on the existence of self-gravitating collisionless dark matter. Modeling such

dark matter systems has been a major focus of astrophysicists, with much of that

effort directed at computational techniques. Not surprisingly, a comprehensive

understanding of the evolution of these self-gravitating systems still eludes us,

since it involves the collective nonlinear dynamics of many-particle systems inter-

acting via long-range forces described by the Vlasov equation. As a step towards

developing a clearer picture of collisionless self-gravitating relaxation, we analyze

the linearized dynamics of isolated one-dimensional systems near thermal equi-

librium by expanding their phase space distribution functions f(x, v) in terms of

Hermite functions in the velocity variable, and Legendre functions involving the

position variable. This approach produces a picture of phase-space evolution in

terms of expansion coefficients, rather than spatial and velocity variables. We

obtain equations of motion for the expansion coefficients for both test-particle dis-

tributions and self-gravitating linear perturbations of thermal equilibrium. This

development presents the opportunity to avoid time-consuming N -body simula-

tions that are limited by statistical uncertainty and provides a powerful analysis

tool for understanding the relaxation to equilibrium.

1. Introduction

Over the past several decades, much evidence has been compiled supporting the idea

that the baryonic mass visible in galaxies (stars, gas, and dust) comprises a small fraction of

the total gravitating mass of such a system. The earliest evidence comes from observations

of galactic motions within larger galaxy cluster systems. Individual galaxies had velocities

that were too large to remain bound to the cluster, given the inferred amount of stellar mass

(Zwicky 1937). However, the uncertainties associated with this analysis were large, and

it took several more decades for more conclusive evidence to emerge. The rotation curves

(circular speed versus galactocentric distance) of spiral galaxies are considered to be one
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of the clearest pieces of evidence for what has become known as dark matter surrounding

galaxies. In general, these curves show circular speeds of stars and gas in spiral galaxies

following solid-body-like rotation near their centers, then reaching a nearly constant value

(Rubin & Ford 1970). This contrasts with predictions based on the observed stellar/gas

mass distributions in these galaxies, where the circular speed should peak and then decrease

in the outer regions of a galaxy. Further studies of stellar kinematics in elliptical galaxies

can hint at the need for dark matter, but the dynamics of such systems are more complex

than for spiral galaxies, and interpretations are not as clear (Romanowsky et al. 2003).

In parallel with these inferences from galaxy dynamics, the idea of dark matter has also

been supported by cosmological investigations. Numerical simulations of large-scale structure

formation in the universe can reproduce the observed filamentary structure of galaxy clusters

if dark matter is included (Navarro, Frenk, White 1996; Springel et al. 2005). Observations

of the cosmic microwave background reveal features that can be described best when roughly

25% of the mass in the universe is dark matter (Spergel et al. 2003). A third route of evidence

for dark matter around galaxies involves observations of gravitational lensing. Locations and

magnifications of images of distant galaxies and quasars that form when their light is bent

around intervening galaxies (or clusters of galaxies) indicate that the lensing galaxies should

have masses larger than what can be accounted for from their visible components (Clowe et

al. 2006; Williams & Saha 2011).

The current paradigm assumes that dark matter must act collisionlessly. The argument

supporting this assumption is as follows. Observations indicating the presence of dark matter

have not shown indications of an edge to the dark matter halo. For example, there are

no isolated spiral galaxy rotation curves where the circular speed of gas begins to show

a Keplerian decrease at some distance. As a result, it is assumed that the dark matter

structures around galaxies have much larger spatial extent than the visible components. The

baryons that will eventually form stars (mostly Hydrogen gas) are initially mixed with the

dark matter over these larger volumes, but the baryons will self-interact via forces other than

gravity. This gives the baryons a cooling mechanism that is unavailable to dissipationless

dark matter and allows gas to radiate energy away and sink towards the center of the dark

matter structure (typically referred to as a halo). Further, collisional effects would lead to

halos with more spherical shapes that observations of galaxy clusters would allow (Mohr et

al. 1995).

The previously mentioned cosmological simulations of structure formation have done

more than simply suggest the reality of dark matter, they have also predicted its behavior

on the scale of galaxies. It is generally agreed upon in the simulation community that dark

matter halo mass density profiles have central cusps ρ ∝ r−γ where γ ≈ 1. The logarithmic

density profiles then monotonically steepen as one moves away from the center (e.g. Navarro,

Frenk, White 1997; Navarro et al. 2004). The consistency of the density behavior across

mass scales, initial conditions, and simulation methods suggests that some simple underlying

physics is at play in these self-gravitating collisionless systems. Further investigations into the

kinematics of dark matter systems have likewise heightened the suggestion of a fundamental
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physical process driving the formation of mechanical equilibrium dark matter halos (Taylor &

Navarro 2001; Hansen & Moore 2006; Lithwick & Dalal 2011). Investigations of these three-

dimensional (3-d) systems involve a wide range of modes of evolution that contribute to the

relaxation from initial conditions to a final equilibrium state. The radial orbit instability

(Merritt & Aguilar 1985), along with evaporation and ejection (Binney & Tremaine 1987,

Chapter 7), are examples of these modes.

In this paper we will consider a one-dimensional (1-d) self-gravitating collisionless system

(which can also be formulated as a “sheet” model (Camm 1950). Compared to 3-d models,

the 1-d model is easier to analyze while possessing the essential features of 3-d systems —

attractive long range forces and collisonless collective dynamics. However, it lacks some of

the features of 3-d systems like angular momentum and tidal forces. Though the model is

formulated in terms of continuous distribution functions, it can also be considered as the

N → ∞ limit of system of N particles with masses m, interacting via two-body gravitational

attraction. The evolution of the phase-space distribution function is described by the the

Vlasov equation (or collisionless Boltzmann equation),

df

dt
=

∂f

∂t
+ v

∂f

∂x
+ a(x)

∂f

∂v
= 0, (1)

where f(x, v; t) is the normalized distribution function

∫

∞

−∞

∫

∞

−∞

f(x, v; t) dx dv = 1.

The t argument is implied in what follows. The density is obtained simply by integrating

over velocities

λ(x) = M

∫

∞

−∞

f(x, v) dv, (2)

where M is a mass scale for the system (mass per unit area in the sheet model; the total

mass Nm for particles). The acceleration a(x) for 1-d systems is calculated by simply taking

the difference of the total masses on each side of x,

a(x) = −g

∫ x

−∞

λ(s)ds+ g

∫

∞

x

λ(s)ds (3)

= g(M> −M<),

where g is the 1-d analogue of Newton’s gravitational constant, and M> and M< represent

the mass to the right and left of any location x, respectively. Note the long-range nature of

the interaction, which couples particles through the distance between them. Likewise, the

density is non-local in phase space, in that it involves an integral over velocities.

Studies of such 1-d systems have a long history (Camm 1950). In general, much of the

work can be categorized by dealing with either cosmological conditions (e.g. Valgeas 2006)

where an additional non-self-gravitating potential energy term is included in the Hamilto-

nian (or periodic boundary conditions are used), or isolated systems where self-gravity is the

only source of potential (e.g. Reidl & Miller 1988; Koyama & Konishi 2001; Schulz et al.
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2013). Within each of these categories, a variety of initial conditions have been investigated.

Broadly speaking, initial conditions are typically near-equilibrium (e.g. Reidl & Miller 1987)

or far-from-equilibrium (e.g. Joyce & Worrakitpoonpon 2011). The situations we investi-

gate are isolated systems near thermal equilibrium. Such non-equilibrium systems might be

considered to be in the final stages of condensation from uniform cosmological conditions,

or perhaps in the aftermath of a collision in which two systems coalesce/pass through one

another. We note that the absence of tidal forces in 1-d guarantees that non-overlapping

systems can be considered as isolated, so that our discussion also applies to clusters of

non-overlapping systems between encounters.

What follows here is a discussion of a method for finding solutions to a linearized version

of Equation 1. Our approach is to expand the distribution function in terms of orthogonal

functions. This method has been used previously, with Hermite polynomials to describe

the velocity aspect of distributions (Reidl & Miller 1988), and Fourier expansions for the

position for cosmological models with periodic boundary conditions (Alvord & Miller 2009;

Reidl & Miller 1987). The form of the thermal equilibrium distribution function for isolated

systems very naturally suggests the use of Hermite polynomials for the velocity and Legendre

polynomials in tanh(x) for the position.

The resulting linear set of equations of motion link the expansion coefficients cm,n(t). In

this notation, m and n are the orders of the Hermite and Legendre polynomials, respectively.

There are few couplings between the coefficients — in fact, the couplings are local, in that

they are only between neighbors on the (m,n) grid. This is rather fortuitous in light of

the long-range nature of the forces, and gives a simple local continuity-type evolution of

coefficients on the (m,n) grid. Furthermore, the method provides a more efficient route to

following the phase-space evolution of modestly perturbed systems, compared to N -body

simulations.

2. Thermal Equilibrium

Based on the structure of Equation 1, any function of the single particle energy,

ǫ =
1

2
mv2 +mφ(x), (4)

is a time-independent solution. Thermal equilibrium is a special case which case the distri-

bution function has the separable Boltzmann form

f0(ǫ) = Ae−βǫ = Ae−
βmv2

2 e−βmφ, (5)

where β ≡ 1/kBT = 1/ 〈mv2〉 is an energy scale (commonly referred to as the inverse

temperature), and A is a normalization constant. Upon substitution of Equations 4-5 into

Equation 1, it is straightforward to obtain the thermal equilibrium distribution function,

which is commonly written as,

f0(x, v) = A sech2 (
βgmM

2
x)e−

βmv2

2 , (6)
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where A = (gM/4)
√

β3m3/2π. The corresponding potential is,

φ0(x) =

∫

∞

−∞

g|x− s|λ(s)ds

=
2

βm
ln (2 cosh

βgmM

2
x), (7)

from which we obtain the acceleration

a0(x) = −∂φ0(x)

∂x
= −gM tanh

βgmM

2
x. (8)

In terms of the quantities defined, the kinetic energy of the equilibrium state is

K0 = M

∫

∞

−∞

v2

2
f0(x, v) dxdv =

N

2β
. (9)

The equilibrium potential energy is likewise given by

U0 =
1

2

∫

∞

−∞

λ0(x)φ0(x, v) dx dv =
N

β
= 2K0, (10)

as required by the virial theorem for one dimension.

The Boltzmann nature of the one-dimensional self-gravitating system is a vital difference

from the three-dimensional case. Mechanical equilibria of realistic three-dimensional self-

gravitating systems always contain gradients in the kinetic temperature, TK ∝ 〈v2〉, that act
as pressure support against gravity. Only the infinite mass and energy isothermal sphere

has a constant temperature. This one-dimensional distribution function is a true thermal

equilibrium, as the kinetic temperature is uniform throughout the equilibrium system.

For simplicity, we transform to dimensionless coordinates using the definitions,

χ =
βgmM

2
x and ̟ =

√

βm

2
v.

The scaled equilibrium distribution function is,

f̃0(χ,̟) =
2

βgmM

√

2

βm
f0 =

1

2
√
π
sech2 χ e−̟2

. (11)

where tildes are used to indicate dimensionless functions, when a distinction is necessary.

The Vlasov equation transforms to,

∂f̃

∂τ
+̟

∂f̃

∂χ
+ α(χ)

∂f̃

∂̟
= 0, (12)

where τ =
√

βm/2 gMt is the dimensionless time and α(χ) = a/(gM) is the dimensionless

acceleration function.
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3. Orthogonal Polynomials

The form of the equilibrium distribution function suggests a set of orthogonal functions

to use as a basis for a polynomial expansion. We consider the expansion,

f̃(χ,̟) =
∑

i,j

ci,jGij(χ,̟)f̃0(χ,̟), (13)

where the ci,j are real expansion coefficients. The Gij are functions defined by

Gij(χ,̟) =

√

2j + 1

2ii!
Hi(̟)Pj(tanhχ), (14)

where the Hi are Hermite polynomials of order i, and the Pj are Legendre polynomials of

order j. The Gij are constructed to be orthonormal to f0, which serves as a weighting

function,
∫

∞

−∞

∫

∞

−∞

Gij(χ,̟)Gi′j′(χ,̟)(̟)f̃0(χ,̟) dχ d̟ = δii′δjj′. (15)

We routinely use the Hermite polynomial orthogonality condition,

∫

∞

−∞

Hi(̟)Hi′(̟)e−̟2

d̟ = δii′2
i
√
πi!, (16)

where δ is the Kronecker delta. For the Legendre orthogonality condition, we can eliminate

the factor sech2 χ with the change of variables u = tanhχ and du = sech2 χdχ,

∫

∞

−∞

Pj(tanhχ)Pj′(tanhχ) sech
2 χ dχ =

∫ 1

−1

Pj(u)Pj′(u) du = δjj′
2

2j + 1
. (17)

Note that this substitution also maps infinite limits on any χ integral to the interval [-1,1].

At thermal equilibrium, only the i = 0, j = 0 coefficient is nonzero. For an arbitrary

distribution function f̃(χ,̟) perturbed from thermal equilibrium, the coefficients can be

determined from

ci,j =

∫

∞

−∞

∫

∞

−∞

Gi,j(χ,̟)f̃(χ,̟) dχ d̟. (18)

This equation represents a transformation from phase space to a discrete (i, j) grid of coef-

ficients.

The expansion dictates that all mass must derive from the (0,0) term,

M̃i,j ≡
Mi,j

M
=

∫

∞

−∞

∫

∞

−∞

f̃i,j dχ d̟

=

∫

∞

−∞

∫

∞

−∞

ci,jGij(χ,̟)f̃0(χ,̟) dχ d̟

= ci,jδi0δj0,
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from which we obtain M̃0,0 = c0,0 = 1. In a similar fashion, one can see that mass density

λ̃(χ) derives only from i = 0 terms,

λ̃(χ) =

∫

∞

−∞

f̃i,j d̟

=

∫

∞

−∞

∑

i,j

ci,jGij(χ,̟)f̃0(χ,̟) d̟

=
∑

j

c0,j
√

2j + 1Pj(tanhχ)λ̃0(χ). (19)

4. Linear Perturbations

We now use the orthogonal polynomials developed in the previous section as a basis

to study the dynamics of perturbations from thermal equilibrium. We consider distribution

functions of the form,

f̃ = f̃0 + δf̃1, (20)

where f̃1 is the perturbing function and δ ≪ 1 is an expansion parameter.

Using this perturbed f̃ in Equation 1 produces a modified Vlasov equation for the

perturbing function (in terms of the previously defined dimensionless quantities),

∂f̃1
∂τ

+̟
∂f̃1
∂χ

+ α0(χ)
∂f̃1
∂̟

= 2̟α1(χ)f̃0 (21)

where we have used ∂f̃0/∂̟ = −2̟f̃0. The accelerations are given by

α0(χ) = −
∫ χ

−∞

λ̃0(χ
′) dχ′ +

∫

∞

χ

λ̃0(χ
′) dχ′ = − tanhχ,

α1(χ) = −
∫ χ

−∞

λ̃1(χ
′) dχ′ +

∫

∞

χ

λ̃1(χ
′) dχ′. (22)

The term 2̟α1(χ)f̃0 is required by Newton’s Third Law. In this equation, it has been

written on the right hand side to signify that it is neither a convective nor an advective

term. In fact, the right hand side is best characterized as a collision term as it represents the

deflection of particles into and out of equilibrium due to the perturbation. Here, we ignore

the second-order term describing the self-interaction of the perturbing particles, α1∂f̃1/∂̟.

We now express the perturbing distribution function in terms of the Hermite and Leg-

endre polynomials discussed earlier,

f̃1 =
∑

i,j

ci,j

√

2j + 1

2i i!
Hi(̟)Pj(tanhχ)

sech2 χe−̟2

2
√
π

, (23)

where c0,0 = 0 since the equilibrium contribution has already been removed. This guarantees

that the perturbations are massless. Using Equation 19 in Equation 22, the perturbing
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acceleration is found to be,

α1(χ) =
∑

j

c0,j
√

2j + 1

[
∫

∞

χ

Pj(tanhχ
′)
sech2

2
χ′ dχ′−

∫ χ

−∞

Pj(tanhχ
′)
sech2

2
χ′ dχ′

]

. (24)

Upon making the substitution u = tanhχ, sech2 χ = 1−u2, du = (1−u2) dχ, this simplifies

to,

α1(u) =
1

2

[

∑

j

c0,j
√

2j + 1

(
∫

1

u

Pj(u
′) du′ −

∫ u

−1

Pj(u
′) du′

)

]

. (25)

In terms of the u variable, the modified Vlasov equation (Equation 21) becomes,

∂f̃1
∂τ

+̟(1− u2)
∂f̃1
∂u

− u
∂f̃1
∂̟

− 2̟α1(u)f̃0 = 0. (26)

Substituting Equation 23 and canceling a common factor of f̃0 produces,

∑

i,j

{

ċi,jHiPj + ci,j̟Hi(1− u2)
∂Pj

∂u
− ci,juPj

∂Hi

∂̟

}

− 2̟α1(u) = 0. (27)

Applying standard Hermite and Legendre polynomial recursion relations to Equation 27

and using the fact that Pn(1) = 1 and Pn(−1) = (−1)n in the simplification of α1, results in,

∑

i,j

√

2j + 1

2i i!

{

ċi,jHiPj + ci,j

[

j(j + 1)

2(2j + 1)
Hi+1Pj−1−

j(j + 1)

2(2j + 1)
Hi+1Pj+1 +

ij(j − 1)

2j + 1
Hi−1,j−1− (28)

i(j + 1)(j + 2)

2j + 1
Hi−1Pj+1 + δ0,i

1

2j + 1
H1 [Pj+1 − Pj−1]

]}

= 0.

The term containing the Kroenecker delta corresponds to the 2̟α1(χ)f̃0 term in Equation 21

and is zero except when i = 0. Finally, we obtain the equations of motion for the coefficients

by multiplying this expression by Gm,nf̃0, integrating over ̟ and u, and making use of the

orthogonality relations Equations 16-17. The resulting expressions have the form,

ċm,n = Lm−1,n−1

m,n cm−1,n−1 + Lm−1,n+1

m,n cm−1,n+1 +

Lm+1,n−1

m,n cm+1,n−1 + Lm+1,n+1

m,n cm+1,n+1, (29)
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where the matrix elements Li,j
m,n are given by

Lm−1,n−1
m,n =

√
m(n− 1)n− 2δ1,m

√

2(2n+ 1)(2n− 1)
,

Lm−1,n+1
m,n = −

√
m(n + 2)(n+ 1)− 2δ1,m
√

2(2n+ 1)(2n+ 3)
,

Lm+1,n−1

m,n =

√
m+ 1(n + 1)n

√

2(2n+ 1)(2n− 1)
,

Lm+1,n+1

m,n = −
√
m+ 1(n+ 1)n

√

2(2n+ 1)(2n+ 3)
, (30)

where m,n, i, j ≥ 0. The test-particle case is obtained by omitting the Kronecker δ1,m terms.

Equations 29-30 are the main results of this paper. For linearized dynamics the cm,n

evolve by coupling to diagonal neighbors only. This is somewhat surprising in light of

the long-range nature of the forces, and can be traced back to the recursion relation that

replaces the integral over χ in the calculation of α1. Because of this nearest-diagonal-neighbor

coupling, the even parity and odd parity modes completely decouple, where the parity is given

by (−1)m+n. For simplicity, we shall concern ourselves with the even parity modes only, and

set all the odd parity coefficients to zero. This automatically guarantees that the center of

mass velocity and position are zero, 〈̟〉 = 〈χ〉 = 0.

5. Discussion

We have demonstrated that a set of orthonormal polynomial terms based on the equi-

librium distribution function is useful for investigating the evolution of one-dimensional,

self-gravitating, collisionless systems, at least for small linear perturbations from equilib-

rium. The polynomial coefficients interact via diagonal-neighbor couplings, producing an

alternate view of the evolution of these systems in terms of coefficients cm,n on the (m,n)

grid.

This polynomial expansion analysis of the Vlasov equation provides a novel, and useful,

view of the behavior of one-dimensional self-gravitating systems. While not in the scope of

this introductory work, one can imagine several directions any future investigations using

this analysis might take. For example one might study the aftermath of collisions of isolated

systems, or the stationary states of one-dimensional systems, or the frequency spectrum of

the L matrix. One could extend the analysis to second-order to investigate the onset of

nonlinear effects, like stability or chaotic behavior. The nearest-neighbor coupling of the

coefficients leads to “local” continuity-type dynamics of conserved quantities like energy

and fine-grained entropy on the (m,n) grid that should give further insight into the non-

equilibrium thermodynamics of these systems.
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