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Abstract

In the next decade gravitational waves may be detected using a pulsar timing
array. In an effort to develop optimal detection strategies for stochastic backgrounds
of gravitational waves in general metric theories of gravity, we investigate the overlap
reduction functions for these theories and discuss their characteristics. We show
that sensitivity increases for non-transverse gravitational waves and discuss the
physical origin of this effect. We calculate the overlap reduction functions for the
current NANOGrav Pulsar Timing Array (PTA) and show that the sensitivity to
the vector and longitudinal modes can increase dramatically for pulsar pairs with
small angular separations.

Introduction

Advancements in gravitational wave astronomy are making it possible to test Einstein’s
theory of gravity. The detection of gravitational waves (GWs) could support or rule out
modified gravity (non-Einsteinian) theories. Furthermore, the detection of GWs will open
a new era of astronomy, making it possible to learn more about astrophysical objects in
the universe and the beginnings of the universe itself.

Current GW detection efforts focus primarily on ground-based laser interferometric de-
tectors and the use of pulsar timing arrays. Pulsar timing arrays search for GWs by
exploiting the microsecond regularity of pulsar signals. The presence of a GW in the
space between the Earth and the pulsar would be manifested by a redshift, z(t), in the
pulsar’s signal. Radio telescopes are used to determine a quantity known as the timing
residual, which is defined as the difference between the actual and expected time of arrival
of a pulse:

R(t) = TOA actual − TOA expected. (1)

The timing residual is directly related to the redshift of the pulse,

R(t) =

∫ t

0

dt′z(t′) (2)
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which can also be defined geometrically using the techniques discussed by (Detweiler
1979). The metric perturbation due to a GW has the plane-wave expansion

hij(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ e2πift(t−Ω̂·~x)hA(f, Ω̂)εAij(Ω̂)

where the sum is over all possible GW polarization modes (plus, cross, breathing, longi-
tudinal, vector x, vector y) and εij are the polarization tensors given in Table 1, and for
pulsar signals originating in the direction p̂ (see Fig. 1), induces the redshift

Figure 1: Geometry of the two pulsar-Earth system; ξ is the pulsar separation angle and
L1, L2 are the distances of the two pulsars from the Earth (origin). Pulsar 1 has been
placed on the z-axis for convenience, though the initial choice of basis is arbitrary.

z(t, Ω̂) =
p̂ip̂j

2
(

1 + Ω̂ · p̂
) [hij(tp, Ω̂)− hij(te, Ω̂)] (3)

where tp, te represent the time of pulse emission and the time the pulse is received at the
Earth. Writing (3) in the frequency domain, the redshift can be expressed in terms of
the antenna patterns FA(Ω̂)

z̃(f, Ω̂) = (e−2πifL(1+Ω̂·p̂) − 1)
∑
A

hA(f, Ω̂)FA(Ω̂). (4)

For a stochastic background of GWs, the signal appears in data as correlated noise
between measurements from different detectors. The output of the ith detector is of the
form

si(t) = zi(t) + ni(t) (5)
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ε+ab = m̂⊗ m̂− n̂⊗ n̂ ε×ab = m̂⊗ n̂+ n̂⊗ m̂
εbab = m̂⊗ m̂+ n̂⊗ n̂ εlab = Ω̂⊗ Ω̂

εxab = m̂⊗ Ω̂ + Ω̂⊗ m̂ εyab = n̂⊗ Ω̂ + Ω̂⊗ n̂

Table 1: Polarization tensors

where zi(t) corresponds to the unknown GW signal and ni(t) to noise (assumed in this case
to be stationary and Gaussian). For coincident, co-aligned detectors, the cross-correlation
statistic is defined as

S =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ s1(t)s2(t′)δ(t− t′). (6)

In general, detectors are neither coincident nor co-aligned and it is necessary to generalize
the delta function in (6). This generalization appears in the statistic as

S =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ s1(t)s2(t′)Q(t− t′) (7)

where Q(t−t′) is the filter function. The optimal detection statistic is found by optimizing
the filter function; this method is known as matched filtering and is the primary strategy
for GW signal detection. To do the matched filtering, the expected signal-to-noise ratio

SNR =
〈S〉2√

〈S2〉 − 〈S〉2
(8)

is maximized to find the optimal filter function. In the frequency domain, this appears
as

Q̃(f) = χ
ΩGW (|f |)Γ(|f |)
|f |3P1(f)P2(f)

(9)

where ΩGW (|f |) is the stochastic GW spectrum, P1(f) and P2(f) are power spectra, χ is
a normalization constant and Γ(|f |) is the overlap reduction function, which characterizes
the loss of sensitivity due to detectors being non-coincident and non-aligned.

The overlap reduction function is defined as

Γ(|f |) = β
∑
A

∫
S2

dΩ (e{2πifL1(1+Ω̂·p̂1)} − 1)(e{−2πifL2(1+Ω̂·p̂2)} − 1)FA
1 (Ω̂)FA

2 (Ω̂)

where the sum is over all possible GW polarizations (Lee et al. 2008) and the exponential
terms (or so-called pulsar terms) describe the metric perturbation at each pulsar. In the
regime of alternative gravity theories, each term in the sum may be explicitly computed,
i.e.

Γ(|f |) = Γ+(|f |) + Γ×(|f |) + Γb(|f |) + Γl(|f |) + Γx(|f |) + Γy(|f |),

and it is advantageous to consider each term in (10) separately since various gravity
theories require different polarizations (Will 1993; Nishizawa et al. 2009; Lobo 2008; Alves
et al. 2009; Capozziello and Francaviglia 2008; De Felice and Tsujikawa 2010; Brunetti
et al. 1999; Clifton et al. 2011; Sagi 2010; Clifton et al. 2010; Skordis 2009; Milgrom 2009).
It is convenient to note at this point that the first three terms listed in (10) correspond to
transverse wave propagation (the first two being the modes of General Relativity), while
the latter three correspond to non-transverse wave propagation.
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Figure 2: Γ(fL) for the various polarization modes: plus (a), breathing (b), shear (c) and
longitudinal (d). In the latter two modes, smaller pulsar separation angles correspond to
retained frequency dependence in Γ(fL). Nearly all the non-transverse curves eventually
converge, but at rather high values of Γ(fL) relative to the transverse modes, indicating
increased sensitivity to GWs with these polarizations.

Overlap reduction functions

The overlap reduction function has a closed analytic form for transverse GWs. The
overlap reduction function for the plus mode has been calculated by (Anholm et al. 2009)
and is given by

Γ+(ξ) = 3

[
1

3
+

1− cos ξ

2

[
log

(
1− cos ξ

2

)
− 1

6

]]
, (10)

where ξ is the angular separation of the pulsars. For the breathing mode, a closed form
is given by (Lee et al. 2008):

Γb(ξ) =
3

4π

π

3
(3 + cos ξ) . (11)

For the case of non-transverse GWs, the overlap reduction function cannot be integrated
analytically and must be treated numerically.

4



In general relativity the pulsar term is typically excluded from the integral (10) with-
out any loss of optimality (Anholm et al. 2009); see Fig. 2a. The same is not true for
scalar and vector GW modes. For non-transverse GW polarization modes, frequency
must be retained in the overlap reduction function for pulsars that are nearly co-aligned
in order to maintain optimality (Fig. 2). Furthermore, larger values of the non-transverse
overlap reduction functions (Figs. 2) indicate increased sensitivity to these modes, in
agreement with the results of (Lee et al. 2008; Alves and Tinto 2011). This behavior is
absent for transverse GW polarization modes.

The effect on non-transverse GW polarization modes can be understood by studying
the induced frequency changes for GWs of different polarizations. Consider the spacetime
metric due to a longitudinal mode GW perturbation:

gab = ηab + hab(t− z). (12)

It can be shown using (12) that the redshift for this perturbation is

z̃l(f, ẑ) =
cos2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)hl. (13)

The analogous redshift for a plus mode GW perturbation is

z̃+(f, ẑ) =
− sin2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)h+. (14)

In the region where θ → π, (13) and (14) appear to become singular, though a simple
series expansion shows that only the longitudinal mode retains any unusual behavior in
this sky region: Let θ = π − δ, where δ is a real parameter satisfying δ � 1. One may
easily conclude that

z̃l(f, ẑ) ∼ πifL(1− δ2)hl (15)

for the longitudinal case, while

z̃+(f, ẑ) ∼ πifLδ2h+ (16)

for the plus mode. In the limit as δ → 0, z̃+ vanishes while z̃l approaches a constant
proportional to fL. In the time domain, the longitudinal mode redshift for θ ≈ π goes as

zl(t, ẑ) ∝ Lḣ. (17)

The right hand side of (17) may be identified as a velocity.

For co-aligned pulsars in the problematic sky region (θ ≈ π), Γl(f) is proportional to
the square of the redshift,

Γl(f) ∝ −2π

∫ 1

−1

d(cos θ)
∣∣(e−2πifL(1+cos θ) − 1

)∣∣2 cos4 θ

4(1 + cos θ)2
(18)

which may be evaluated analytically. In the limit of large fL,

Γl(f) = π
{

37/6− 4γ − 1/(π(fL)2) + 4 Ci(4πfL)

− 4 log (4πfL) + 2πfL Si(4πfL)} (fL� 1)

∼ (37/6− 4γ) π − 4π log (4πfL) + π3fL (19)
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so that Γl(f) goes like fL up to some large frequency 1. This large limit Γl(f) is plotted
with the overlap reduction functions in Fig. 2d and, with the exception of the singular
behavior near the origin, fits the Γl(f) curve for co-aligned pulsars (ξ = 0). As ξ increases,
correction terms in (19) restrict f dependence of Γ(f) until it is approximately constant
as a function of frequency.

An identical analysis for the shear GW modes produces similar results. Given a met-
ric perturbation of the same form as (12), the redshift for the vector-y mode goes as

z̃y(f, ẑ) =
− cos θ sin θ

(1 + cos θ)
(e−2πifL(1+cos θ) − 1)hy. (20)

Doing the expansion about δ,

z̃y(f, ẑ) ∼ −2πifLδ

(
1− δ2

2

)
hy. (21)

As in (19), z̃(f, ẑ) retains dependence on fL near θ = π, but the growth in fL is con-
strained by a factor of δ (see Fig. 2c).

The same behavior is not present in other sky locations. If the GW propagates per-
pendicular to the earth-pulsar line (θ = π/2 + δ), then up to second order in δ the
redshifts

z̃l =
(
e−2πifL(1−δ) − 1

) −δ2

2(1− δ)
(longitudinal) (22)

z̃y =
(
e−2πifL(1−δ) − 1

) δ

(1− δ)
(shear) (23)

z̃+ =
(
e−2πifL(1−δ) − 1

) −1

2(1− δ)
(plus) (24)

are obtained. Even while δ is small, the exponential cannot be fully expanded. Oscilla-
tory behavior dominates the redshift in this sky location. Physically, this is due to the
fact that the pulse “sees” different phases of the GW and the contribution to the redshift
varies based on this phase.

In the regime where θ ≈ π, the pulse is effectively in the long wavelength limit in which
the redshift can increase monotonically up to some limiting f at which point the Taylor
series expansion of the pulsar term (15) is no longer valid. Given a large initial “kick”,
the velocity term Lḣ becomes quite large. This is what is responsible for the much larger
values of the longitudinal and shear mode overlap reduction functions compared to those
of the transverse modes.

Overlap reduction functions for the NANOGrav pulsars

The NANOGrav PTA consists of 24 pulsars. Australia Telescope National Facility data

1Here γ is Euler’s constant.
6



PSRJ Distance (kpc) PSRJ Distance (kpc)
J0030+0451 0.23 J1853+1303 1.60
J0218+4232 5.85 J1857+0943 0.70
J0613-0200 2.19 J1903+0327 6.45
J1012+5307 0.52 J1909-3744 0.55
J1024-0719 0.35 J1910+1256 1.95
J1455-3330 0.74 J1918-0642 1.40
J1600-3053 2.67 J1939+2134 3.58
J1640+2224 1.19 J1944+0907 1.28
J1643-1224 4.86 J1955+2908 5.39
J1713+0747 0.89 J2010-1323 1.29
J1738+0333 1.97 J2145-0750 0.50
J1744-1134 0.17 J2317+1439 1.89

Table 2: NANOGrav Pulsar Data

for these pulsars is given in Table 2 (Manchester et al. 2005). Using numerical techniques,
the overlap reduction function for each pulsar pair was computed. Results are given in
Fig. 3 a–d and show that the calculated values of the Γ(f) are consistent with analytical
results discussed in previous sections of this document. for the non-transverse modes for
frequencies up to ∼ 10−9 Hz.

Pulsar pairs with the smallest (ξ < 12◦) separation angles (starred curves in Fig. 3
b, d) are characterized by large values of the overlap reduction function and monotonic
growth up to some limiting frequency. Pulsar pairs with larger (ξ > 12◦) separation
angles (un-starred curves in Fig. 3 b, d and all curves in Fig. 3) do not display monotonic
growth up to a limiting frequency, but still obtain much larger values than those of the
plus and cross modes. Fig. 3 shows that sensitivity is greater for scalar and vector modes
than tensor modes, and increases rapidly for pulsars that are nearly co-aligned in the sky.
Theoretical sensitivity estimates using (19) support this result. In these plots, increased
variation in curve amplitudes appears due to the fact that the pulsars are not equidistant
from the Earth.

Over the entire range of frequencies relevant to pulsar timing experiments (up to ∼ 10−7),
the overlap reduction functions are roughly constant. In practice, some optimality is lost
due to the fact that pulsar distances are known at best to only ∼ 10% (Cordes and Lazio
2002).

Discussion

Direct detection of GWs is possible in the next decade using a pulsar timing array.
This detection will provide a mechanism for testing various metric theories of gravity. To
develop robust detection strategies, we have analyzed overlap reduction functions for all
possible GW polarization modes. For non-transverse GWs, there exists a region of the
sky for which the pulse is in the long wavelength limit, leading to a frequency dependent
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Figure 3: Γ(f) for some of the NANOGrav pulsar pairs. Pulsar pairs, along with their
angular separation in degrees, are given in the legend. As f increases, Γ(f) approaches
a constant value. The asterisk indicates the NANOGrav pulsar pair with the smallest
angular separation ( 3.35 degrees). Note the larger values of the Γ(f)s for this pair.
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overlap reduction function. Large values of Γ(f) for these non-transverse modes indicates
increased sensitivity to scalar-longitudinal and vector GWs. A study of current data
from the NANOGrav collaboration indicates that pulsar timing measurements are in the
optimal regime for most pulsars.
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