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Abstract

Pulsar timing arrays (PTAs) can detect low-frequency gravitational waves (GWs) by searching for correlations in the
residuals of pulse arrival times. Among the many interesting sources of these GWs are individual supermassive black
hole binaries (SMBHBSs). Performing a full Bayesian inference of individual GW sources with PTA data is a com-
putationally intensive and often prohibitive task due to the large parameter spaces, complicated deterministic signal
modeling, and parameter covariances. Recently methods have been developed to speed up the analysis of GWs from
circular SMBHBs by separating the parameter space in shape and projection parameters, and effectively marginal-
izing over parameters whose updates incur very little computational cost in the model likelihood. We extend these
methods to a pipeline for eccentric SMBHB sources, and present its accuracy in recovering GW signal parameters in
simulated data. We also test the scalability of this method to future larger datasets, and discuss what changes can be
made for future analyses.

1. Introduction

The discovery of a low-frequency stochastic gravitational wave (GW) signal by the North American Nanohertz Ob-
servatory for Gravitational Waves (Agazie et al. 2023c), European Pulsar Timing Array (Antoniadis et al. 2023), and
Parkes Pulsar Timing Array (Reardon et al. 2023) has opened a new chapter in the field of GW astrophysics. Pulsar
timing array (PTAs; Sazhin 1978; Detweiler 1979; Foster & Backer 1990) collaborations search for nHz frequency
GWs by analyzing the the times-of-arrival (TOA) in radio pulses emitted by millisecond pulsars. By regularly ob-
serving such pulsars over a decades-long timespan PTAs can reach the sensitivity necessary to probe the nHz band.
The recently identified stochastic GW signal displayed, to varying levels of significance, the expected Hellings-Downs
(HD; Hellings & Downs 1983) spatial correlations between pulsars that is indicative of the signal being a gravitational
wave background (GWB).

The nHz GWB is typically described as the collective signal from the population of supermassive black hole binaries
(SMBHB) present in the observable universe (Sesana et al. 2005). All massive galaxies hold a supermassive black
hole, typically of mass 106 — 10'° M, at their centers (Kormendy & Ho 2013). Galactic merger events consequently
lead to the formation of SMBHB systems. When the component black holes reach inspiral phase, the emission of
GWs becomes the dominant force behind the system’s evolution. To date there have been no confirmed observations
of SMBHBs. With the discovery of a GWB signal, a next major step for PTA science is to search for particularly
loud individual binaries that can be detected amongst the stochastic ensemble. Measurements of GWs from individual
sources would provide useful constraints on the astrophysical environments of SMBHBs (Quinlan 1996; Haiman et al.
2009) and could be coupled with electromagnetic observations to study galactic evolution and further multimessenger
astrophysical research (eg. Charisi et al. 2022).

Many previous analyses have been carried out using PTA data aiming to detect and characterize GWs from single
binaries, and they have placed progressively more stringent upper limits as the data set sensitivity grows (Arzouma-
nian et al. 2023). In practice, Bayesian methods to conduct these searches tend to be computationally intensive and
inefficient undertakings, where the Markov Chain Monte Carlo methods working under the hood struggle to sample
with large parameter spaces and the irregularly sampled TOA data that requires PTA GW searches to exist entirely
in the time domain. Furthermore, these analyses are often restricted to the case of circular orbits, as over time GW
emission will cause the binary to circularize. However, it has been shown that binary systems can retain significant
eccentricities when reaching the sensitivity of the PTA band, and therefore a more complete prescription for analyzing
the more complex eccentric signal model is necessary (eg. Armitage & Natarajan 2005; Roedig & Sesana 2012).



Recently new analysis techniques have been developed in the code QuickCW (Bécsy et al. 2022) that offer a speed-up
of roughly two orders of magnitude for the individual circular binary search. This is accomplished by dividing the
model space into two classes: projection parameters that determine how a GW signal is projected onto the lines-of-
sight of the pulsars, and shape parameters that define the morphology and structure of the signal itself. In this paper
we propose an extension to the QuickCW algorithm to account for eccentric binary orbits and their evolution, and
evaluate the potential for a generalized individual binary search with current PTA data.

This paper is organized as follows. In Sec. 2 we outline the signal models for the individual binary GW search and
define the reformulated likelihood function and other improvements to the Bayesian analysis pipeline. We analyze
simulated data sets in Sec. 3 and scale the computational efficiency of the new method against future data volume
increases. We conclude in Sec. 4 and discuss future directions of this research. In this paper we use units where
G=c=1.

2. Methods

In this paper we focus solely on the Bayesian methods used to carry out GW analyses. This is a method of statistical
inference in which one’s knowledge of an event is updated with subsequent observations, and the term “probability”
refers to the degree of belief in a particular event. A standard way to perform such inference is through Markov Chain
Monte Carlo (MCMC) sampling, where samples of the target posterior distribution are iteratively drawn according
to some proposal distributions and accepted or rejected according to a pre-defined algorithm such as the Metropolis-
Hastings condition (Metropolis et al. 1953).

We describe the data acquisition, preprocessing, and noise modeling in Sec. 2.1. In Sec. 2.2 we outline the signal
models for individual binary sources in both circular and eccentric orbits. We then define a reformulated model
likelihood in Sec. 2.3 that allows for faster evaluation of specific sets of parameters. Lastly in Sec. 2.4 we introduce a
modified MCMC algorithm that can best leverage the new likelihood and parameter groupings.

2.1. PTA Data and Noise Model Pulsars are observed using the Arecibo Observatory, the Green Bank Tele-
scope, and the Very Large Array, with measurements taken in frequencies ranging from 327 MHz to 3GHz. Obser-
vational cadences, or “epochs” are typically on the order of once per month. Data acquisition systems produce pulse
profiles from raw baseband data by performing coherent dedispersion, RFI excision, flux calibration, and polarization
calibration. Time-of-arrival (TOA) data are then generated from the profiles using the PSRCHIVE package. The pro-
cessed TOAs are then fit on a per-pulsar basis to a timing model comprising pulsar-specific parameters such as sky
locaiton, parallax, spin period and spin period derivative. For binary pulsars, this also includes five Keplerian binary
parameters. The fits are conducted using the TEMPO2 and PINT packages.

We model the timing residuals as a linear combination of noise sources and potential GW signals, denoted as:

0t = Me + nwN + nrN + NCURN + S. (1)

The term M e represents errors inherit to the timing model, with M being the design matrix describing the linearized
model and ¢ offsets from the model parameters. The terms nwy and ngy describe the per-pulsar white- and red-noise
contributions, respectively. Spatially correlated red-noise signals that are common amongst all pulsars are included as
ncurn.- Lastly, s defines the induced timing delay originating from deterministic sources, such as GWs from individual
binaries. For a more complete review of PTA noise modeling, we direct the reader to Agazie et al. (2023b).

At the heart of any MCMC sampler for Bayesian inference is repeated calculations of the model (log-)likelihood,
which for the timing residuals defined above can be written as:

1 1
logL = —5 (0t — slot — s) — 3 log det (27 C) , (2)



where the inner products are defined as (a|b) = a” C~'b. Here C is the total covariance matrix for the model, created
as a combination of the white noise covariance matrix [V, the design matrix 7', and the hyperparameter prior matrix
B, writtenas C = N + TBTT.

2.2. Continuous Gravitational Wave Sources We now review the signal model for GWs originating from an
SMBHB and their effect on PTA residuals. The GW signal, often called a continuous wave, or CW, due to its minimal
frequency evolution, can be written as (for a detailed review, see Arzoumanian et al. 2023):

s(t,Q) = F(0,0,9)Asy (t) + F* (0, 6, 1) Asx (1), 3)

where the scripts {4 x } denote the plus and cross polarization modes, the two tensor polarizations allowed by general
relativity. The functions £’ and F'* represent the antenna pattern functions that describe the response of a given
pulsar to the emitting source, and are composed of the binary sky location parameters (6, ¢) and GW polarization
angle (1). The terms As , (t) account for the fact that the Earth and pulsar see the induced GW signal at different
times in the binary evolution, and therefore define the difference between the “pulsar-term” and “Earth-term”:

Asy x(t) =54 x (tp) —s4.x(1), 4)

where ?,, is the time measured at the pulsar and ¢ the time measured at the solar system barycenter. The exact forms of
s4.x (t) for a circular binary are given, to zeroth Post-Newtonian (0-PN) order, by:

M5/3 MB/3

RO sin2®(t) (1 + cos?), sy (t) = WQ cos 20(t) cos . (5)

s+(t) =

The parameter M represents the binary chirp mass M = (mym3)>/®/(my + my)'/? for the component black hole
masses mj and mq. The parameters dy, and ¢ are the luminosity distance to the binary and the source inclination angle,
respectively. The time-dependent angular frequency and phase functions are, for reference Earth-term frequency wy
and phase ®:

—3/8
w(t) = wo {1 - ?ME’/%S/ St — to)] (6)

1 e
D(t) = Do+ gz M [wo 5/3 _ w(t)_5/3} . 7)

Circular CW signals have the benefit that they can be written in succinct analytical form through the equations given
above. However, they do not give a complete picture of the SMBHB population as in general binaries will have
a, perhaps non-negligible, non-zero eccentricity. The inclusion of binary eccentricity and the evolution of its orbit
complicates the signal model considerably. For a complete derivation of the GW waveforms for eccentric binary
orbits we direct the reader to Peters (1964), and for a full details of the signal induced by SMBHBs on PTA data see
Taylor et al. (2016) and Susobhanan et al. (2020). Below we summarize the relevant details.

First we note the additional parameters necessary for describing the evolution of eccentric orbits. In addition to the
binary eccentricity, e, there are a number of new angular parameters. There is the eccentric anomaly, u, which serves
to parameterize the radial and phase coordinates. There is the mean anomaly, [, directly related as | = u — e sin u. The
true anomaly, @, is the direct analog of the standard phase coordinate. And we also must include the angle of periapsis,
7, in our derivations. Unlike the circular case, the orbital frequency is no longer constant and instead the CWs are
emitted across a range of frequencies. In order to account for this, our focus shifts to the mean orbital frequency, F'.



With these changes in mind, the PTA residuals induced by the eccentric CW can be written, as shown in Taylor et al.
(2016), as:

sy(t) = Z — (1+ cos®1) [ay cos(2y) — by sin(27)] + (1 — cos®1) ¢,

. (8)
sx(t) = Z 2 cos [by, cos(27) + ay, sin(2y)],

n

where the coefficients a,,, b,,, and ¢,, are:

an = —Cw V3 [T o(ne) — 2e,_1(ne) 4+ (2/n)J, (ne) + 2eJ, 1 1(ne) — Jpyo(ne)]sin[nl(t)]

by = Cw Y31 — €2 [J,_a(ne) — 2J,(ne) + Jnyo(ne)] cos[nl(t)] )]
cn = (2/n)Cw™ Y3 T, (ne) sin[nl(1)].

with ¢ defined as an amplitude parameter ¢ = M®/3/dy, and w = 2w F. As expected from the harmonic structure of
GW emission from such orbits, the expression for the induced signal is dominated by Bessel functions. Add to this
the fact that expressing PN-accurate models requires solving coupled differential equations for n, e, 7y, and [ to fully
model their time evolution, and the computational limitations of analyzing deterministic CW signals becomes clear.

2.3. Reformulated CW Likelihood The problem of dealing with large correlated parameter spaces with costly
likelihood evaluations has been alleviated for the case of circular CWs through work developed in Bécsy et al. (2022).
Similar to the F-statistic methods described in Ellis et al. (2012), one can separate the CW parameter space into shape
05 = {6, ¢,wo, M} and projection 8, = {1, dr,, 1), Py} parameters. This allows Eq. 5 to be written as:

4
S(ta Q) = Z O4(i—1)+j (03 ¢a 2 ﬁ% (I)O) S4(i71)+j (t) (10)
j=1

dividing it into a set of filter functions S*(¢) and coefficients o, given by Egs. (15) and (18), respectively, in Bécsy
et al. (2022). Using this set of filters and coefficients allows for a reformulation of Eq. 2 to:

4N, 4N, 4N,
1 1 2 | S l
log L = = (3t]6t) —  log det (2C) + ];akN -5 ;;akam , (11)

where N,, refers to the number of pulsars in the array, M*' = (S*|S!), and N* = (6¢|S*). The most expensive part
of calculating this likelihood is the evaluation of the inner products M*! and N*, which depend entirely on the shape
parameters. Therefore, evaluating Eq. 11 for any set of projection parameters, with all other parameters held fixed,
can be done nearly instantly.

2.4. Multiple-Try Markov Chain Monte Carlo For a standard MCMC routine, the computational burden is
spread equally across the model; all parameters are updated once at a time and simultaneously. In the order to take
full advantage of the new form of the CW likelihood, it is necessary to use an MCMC routine that will perform a large
number of updates to projection parameters for every single update of shape parameters. This is accomplished using
the Multiple-Try Markov Chain Monte Carlo (MTMCMC; Liu et al. 2000) routine, outlined in Algorithm 1, which
serves to maximize the mixing of model parameters that are separated into multiple classes.

In the instance of the CW likelihood, MTMCMC operates by drawing some large block (typically n ~ O(10%)) of
projection parameter updates for a single set of shape parameters. They are drawn according to some joint proposal



Algorithm 1 Multiple-Try Markov Chain Monte Carlo

Require: x, M, N
fort=1...M do
Draw y;..yn ~ Q(x,.)
for j =1...N do
Compute L(x,y;)
end for

According to probability mass function p (x,y) = %
k=1 L%,

,selecty € y;
Draw X;...X5—1 ~ Q(.,y), set xj X

N
With probability & = min {1 M} sety; <y

’ Zg:1 L("lm}’)
end for

distribution Q(x,y) that is chosen to be symmetric in order to relate the proposal weights directly to the likelihood
function. This is attached to a Metropolis-within-Gibbs (MwG; Bai 2009) sampler for proposal draws. In total, it
acts as an effective marginalization over the projection parameters for each shape parameter updates, leading to better
mixing of the Markov chain and faster convergence overall.

Currently this method is publicly available in the QuickCW code (Bécsy et al. 2022). It has been shown to provide
roughly a two-order-of-magnitude speed-up for the full CW Bayesian inference. The most recent NANOGrav CW
analysis successfully utilized the QuickCW methods for efficiently searching the current 67-pulsar dataset (Agazie
et al. 2023a).

3. Results

Considering the success of the QuickCW methods for CW searches from circular binaries, it is worth exploring if the
same principles can be extended for a generalized CW searches of SMBHBs with varying eccentricity. Similar to Sec.
2.3, the induced signal can be divided into a series of coefficients and time-dependent basis functions:

6
S(t7 Q) = Z 06(i—1)+7 (97 ¢7 2, w7 0, (I)()) Sﬁ(i_1)+j (t) (12)

j=1

where we see the inclusion of the initial angle of periapsis, 7o, in the set of projection parameters, and note that the
set of shape parameters present in the functions S6(*~1)+J adds in the mean anomaly, , initial orbital eccentricity, eq,
and the mean frequency, F'.

The exact forms of the coefficients and basis functions are contained within GWecc (Susobhanan et al. 2020; Su-
sobhanan 2023), a PTA analysis code built exclusively for computing signals from eccentric SMBHB sources. This
package is written using the Julia programming language to leverage just-in-time compilation for accelerating the
code. Here we focus on the reformulated signal model present in the package, calculate a likelihood function that
is separably by parameter class, customize an adaptive Metropolis sampler to perform the inference, and develop an
MTMCMC routine to scale computational speed.

To test the performance of this new method, we generated two simulated datasets using the 1ibstempo (Vallisneri
2020) code. Both datasets contained the same 45 pulsars present in the NANOGrav 12.5-year dataset with identical
observing frequencies and TOA errors from the real data. We injected realistic white and red noise consistent with
maximum likelihood values obtained from individual pulsar noise runs. In one dataset, we did not add any additional
CW signal. For the other dataset we added a loud eccentric CW source with a effective signal amplitude roughly
around log,, A ~ —6.5, which corresponds to a ~ 100 ns delay contribution to the residuals. In total, we analyzed a
101-parameter model (2 * Ny, noise parameters, where Vg, is the number of pulsars in the array, and 11 parameters
describing the SMBHB signal) with adaptive Metropolis sampling.



We first analyzed the dataset with no eccentric CW injection in an effort to calibrate the pipeline. Fig. 1 shows
the one- and two-dimensional marginal distributions of a subset of signal parameters common amongst all the pulsars.
The horizontal black lines denote the prior distributions on the parameters. All posteriors closely resemble their priors,
which is indicative of a lack of a detection. The pipeline correctly finds that there is no CW present in the data, and as
such the signal parameters are largely unconstrained. We note that despite the lack of an injection, the model appears
to rule out the high-frequency and high-amplitude part of parameter space. This is likely due to the fact that binaries
present in this extreme regime would experience noticeable frequency evolution over the observation time, and such
evolution would be detectable if present.
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Figure 1: Corner plot of posterior distributions for a eccentric CW search, with a selection of parameters displayed being the source
sky location (6, ¢) and intial eccentricity e, as well as the log mean frequency F' and log effective signal amplitude A ~ MPO/3 /dr.
The analysis was run on a simulated dataset where no single source was injected. The posteriors accurately recover the absence of
any signal, closely mirroring the uniform prior distributions denoted by the horizontal black lines.

Next we considered the case of a dataset with an eccentric CW present, one that is loud enough to be detectable given
the data span. Fig. 2 displays the one- and two-dimensional distributions resulting from a search with the new pipeline.
The black lines denote the injected parameter values. We correctly recover the CW signal, with all true values for the
parameters falling largely within their respective posteriors. We note that in particular the frequency and amplitude
are very well constrained respective to the width of their priors, owing again to the strength of the signal present.

Lastly, we tested the relative efficiency of the methods outlined above by directly comparing the likelihood evaluation
wall times in the old pipeline and new MTMCMC routine. We ran this test on two simulated datasets. The first
dataset was the loud CW injection datasets from above, and the other was double that dataset to allow us to scale the
calculation times. For the old method we timed only the full likelihood calculation. For the method involving splitting
into shape and projection parameters, we timed three separate instances of likelihood updates: one where only shape
parameters were updated and others held fixed, one where projection parameters were updated and others fixed, and
one where only the intrinsic pulsar red noise parameters were changed. The results are summarized in Table 1. We note
that for fixed shape parameters the likelihood evaluation is nearly 20,000 times faster than the old likelihood. Even
when considering all possible updates, the new computation is slightly faster, likely due to the speed-ups available
through using Julia code. The shape parameter changes scale slightly faster than linearly with respect to the number
of pulsars in the array, whereas projection parameter updates scale slightly slower than linearly.
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Figure 2: Corner plot of posterior distributions for an eccentric CW search run on a simulated dataset with a loud (log;, A ~ —6.5)
source injection. The selected parameters displayed here are the same as in Fig. 1. The signal is accurately recovered, with the
injected parameters, denoted by black lines, falling well inside the posteriors.

NANOGrav 12.5-year 2 x NANOGrav 12.5-year
# of pulsars 45 90
# of TOAs 410,064 820,128
Old likelihood calculation 9.5 ms 19.4 ms
Shape parameter update 2.8 ms 6.1 ms
Pulsar red noise update 4.0 ms 8.1 ms
Projection parameter update 0.5 us 0.7 ps

Table 1: Comparison of evaluation wall times for old eccentric CW likelihood and reformulated likelihood parameter
group updates. Wall times are shown for two datasets of varying size to show scaling of likelihood calculations.



4. Discussion

In this paper, we present a preliminary analysis for conducting fast Bayesian inference of GW signals from eccentric
SMBHB orbits using PTA data. We find that by dividing the likelihood into two classes of parameters, shape and
projection, and caching expensive inner products allow us to explore parts of parameter space more cheaply and
numerously, which in total speeds up the full analysis over current techniques. This was shown using MTMCMC
sampling techniques and tested through adaptive Metropolis sampling on two sets of simulated data.

With the discovery of a low-frequency GWB signal in hand, the focus of PTA collaboration research moves squarely
into the realm of individual source detection and characterization. Having a fully general analysis pipeline will be
crucial for detailed studies of these sources, their evolution, and their environments. This work, along with further
merging of the methods of both the QuickCW and GWecc codes will prove useful towards furthering those goals and
keeping the analyses running efficiently with ever-growing datasets.

‘We emphasize that the results outlined above used only simulated data, with idealized injection of white and red noise.
Real PTA data will require broadening these methods to allow for a complete treatment of pulsar noise, described
in detail in Agazie et al. (2023b), and will in turn prove more computationally burdensome. Also, in this paper we
consider only one GW injection, that of an eccentric CW. Further development is required to perform these analyses
while simultaneously marginalizing over the GWB parameters, or to deal with searches where multiple SMBHB
sources can be jointly considered.
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