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Abstract 

In the course of fabricating corrugated horn antennae a technique was developed to avoid certain geometric 

difficulties. Stereolithograpy, a form of 3D printing, had been employed to create a lightweight, cheap, plastic horn. 

However, it was found that it was difficult to plate metal into the corrugations of the plastic horn. To work around 

this, a technique was developed where in the corrugated horn would be produced by assembling a number of easy to 

plate, interlocking rings. The rings would be plated separately, assembled, and electroplated with an exoskeleton. 

The general technique could readily be applied to a large number of similarly difficult scenarios. 

 

Background 

The genesis of this project is in the QUBIC bolometric interferometer. In order to save weight 

and manufacturing costs, the profiled corrugated microwave horn antennae were made of plastic 

via a process known as Stereolithography (SL). They would then be electrolessly plated with a 

thin layer of nickel. Plating proved to be quite challenging, due to the aspect ratio and small scale 

of the corrugations. As the object of study would be the cosmic microwave background 

radiation, they were designed to receive radiation in the W-band (75-110 GHz, 3-4 mm). This 

requires slots about a millimeter deep and half as wide to line the interior of the horn (Timbie, 

2011). The nickel coat that was electrolessly deposited became “spotty” and of visibly low 

quality in the grooves. As SL had already been used to get around horn fabrication issues, it was 

looked to as being a potential solution to this problem. 

 Stereolithography. In a word, SL is amazing. It is a relatively young, and rapidly 

expanding area of 3D printing. It works fairly simply. A vat of plastic resin is selectively 

solidified, layer by layer, via a computer controlled laser. The precision available is stunning, a 

state of the art machine is capable of printing 16µm layers, accurate to about .025mm and the 

minimum feature size is down around .25mm. This makes SL an excellent candidate for 

millimeter regime component fabrication. In addition to the already impressive abilities of SL, it 

is also of note that it is comparatively cheap (prices scale by volume, and not complexity; a 3” 

long horn costs about two or three hundred dollars), lightning fast (parts can ship the same day 

they’re ordered), and produces lightweight products (densities vary, but tend to about 1.3 g/cm
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and components can have their interiors “honey-combed” to further cut weight), and designs that 

would otherwise be nearly, or in some cases fully, impossible to build become trivial 

(Quickparts). Further, the SL process culminates with a somewhat surreal moment where the 

machine operator can reach into the vat of resin and pull out a fully formed widget. The only 



drawback I’ve encountered with SL is that they are yet to invent a conductive resin, and 

therefore any components that would need to be 

conductive require electroless plating. 

 Plating Plastic. While modern plastics 

are engineered to have a wide array of 

properties, to my knowledge we are yet to invent 

a conductive plastic. Adding a thin layer of 

conductive metal fixes this problem but creates 

one of its own, getting the metal to adhere to the 

plastic. Electroless plating works by 

mechanically anchoring a seed layer to the 

substrate, and plating, often auto-catalytically, 

onto that. To make this possible, the plastic 

substrates require a series of acid based 

treatments to roughen the surface. This is 

followed by baths of stannous chloride and palladium chloride, which serve to “activate” the 

substrate and enable and catalyze the electroless deposition (Zhou, 2007). From there an off-the-

shelf electroless nickel plating solution provides a uniform, fine grained, conductive Nickel 

coating. This layer, which for the purposes of this project is made to be approximately 1µm 

thick, features a resistivity that tends to be roughly thrice that of bulk Nickel (thin film resistivity 

was measured to be approximately 4×10
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 Ωm). The nickel layer extends into holes and around 

corners exceptionally well, except for in cases of difficult geometries where the solutions have 

trouble reaching certain areas due to surface tensions, attack angles, and a host of other minor 

issues that become considerably more dominant in areas of difficult geometry. 

Design and Experimentation 

Rather than fight troubled areas, I have opted to remove them. The monolithic SL horn was 

deconstructed into a number of small interlocking rings, which, on their own, are remarkably 

easy to plate and are without difficult trenches.  

 Ring Design. Several ring designs were considered, each with their 

own merits. The desired properties were that they be fairly simple, connect 

together with little or no seam, are stackable, and fit within SL capabilities. 

Shown at left are three of the considered ring cross sections. Ring A was 

ultimately chosen as it avoided any overly complex features, is readily 

stackable, and hides the ring-ring seam. Rings B and C are both very simple, 

but lack in stackability and feature prominent seams. More complicated 

designs involving multiple types of rings being stacked in order were 

scrapped because, while they hid all their seams and were extremely secure 

 

a) 

 

b) 

 

c) 

A section of electrolessly copper plated horn. This was 

produced prior to the switch to the Zhou electroless 

nickel process, which is considered to be an 

improvement. Timbie, 2011. 

Several prototype 

ring designs. See 

text. 



when stacked, they were overly complicated and tested some of the extremes of the SL 

machines. 

Ring A is ideal for corrugated waveguides, where there is constant slot depth and width over a 

large stretch of waveguide. While the rings fit together nicely, and are easily adjusted to fit with 

the taper of a conical or even a profiled horn, incremental shifts in slot 

depth create an assembly issue. To avoid this, horn rings will be 

produced as an “exploded” horn, and attached to a SL rod that will keep 

them ordered until stacking (see cartoon at right). At which point they 

will be summarily broken off and stacked in their respective order. 

 Procedure. There are four distinct steps to the complete 

assembly process. The rings must be roughened, nickel plated, stacked, 

and then copper plated. For a detailed explanation of both the 

roughening and nickel plating process, the Zhou paper ought to be 

consulted, what is important though is the affect the roughening has on 

the later steps. The nickel coat creates a uniform enough layer that there 

are no overt signs of deformity once the rings are plated. An overly rough ring would potentially 

create issues with ring to ring connections. A loose ring, or one with an acid puckered concave 

edge would introduce unwanted gaps into the stacked assembly, while a bloated, convex edge 

would damage the copper exoskeleton. 

Stacking the nickel coated rings is precisely as simple as one would expect. So long as the rings 

are designed to mate with each other and nickel plated uniformly they connect together without 

issue. To ensure this, an entire assembly of rings ought be moved from bath to bath together. At 

times there is some resistance to stacking, especially if the rings are moist. To overcome this, 

rings should be left to dry in a clean, dry environment between processes. Further stacking issues 

can be overcome by applying a small amount of force along the z-axis of the horn. This can be 

delivered in any number of ways to fit the situation, however, I am quite fond of using a pen 

spring attached to a small plastic “X” at each end of an assembly to hold it in place (if no such 

object is readily available, one might consider making a SL item to do the trick). 

The copper exoskeleton binds the entire assembly is perhaps the most important step. It is put in 

place by a simple copper sulfate based electroplating system. For conductivity puposes, the 

exoskeleton would be required to several skin depths, δs, where    √
 

      
 , ρ = resistivity, 

and µr≈1, which works out to approximately 3µm in the microwave regime (Edwards, 1981). For 

structural purposes the exoskeleton would likely be several times thicker. 

 Due to unforeseen events, experiments on this stage of the process have been limited. However, 

it has been found that several items of nickel can be bound by a copper exoskeleton. Several 

nickel coated SL items, held lightly together – in this case by a piece of masking tape outside of 

Horn rings will be kept 

ordered via a SL guide 

which will be removed 

after nickel plating. This 

is expected to reduce 

assembly time 

considerably. 



the electroplating solution – and plated via a bath composed of copper sulfate and commercially 

available additives (Caswell Copper Electroplating Kit) with a 1 amp, 9 volt DC current forms an 

layer of copper that transcends substrate boundaries and forms an exoskeleton. It was observed 

that even as a thin layer, the copper made qualitative, obvious, improvements in the binding 

between nickel items. The copper layer held against the forces of gravity, but was inevitably torn 

asunder by a modest application of force. 

Sadly, no quantitative data has been gathered on the properties of the exoskeleton. It has been 

shown to have obvious and beneficial affects even as a notably thin and low quality shell. 

Further experiments will create copper layers in excess of 10µm thick, perhaps thicker if 

mechanical issues demand it. This will serve as plenty thick for strong conductivity without 

interfering terribly with the overall dimensions of the final product. 

Applications 

Given even the modest performance of the copper plating, there is the possibility for a broad 

range of applications. In the specific case of a corrugated horn, not only can the entire bulk be 

assembled, but a traditionally manufactured portion of a horn can be fitted to an assembly of SL 

rings. Specifically, the throat section of the horn, which is perhaps the most crucial and most 

complicated section, can be electroformed as a solid, high quality piece, and an assembly can be 

mated with it by way of an overlapping exterior sheath, and the two can be electrobonded 

together. An existing fixture, perhaps a proprietary item that cannot readily be reproduced, can 

be fitted to a device with minimal effort. In more general situations, the technique can be used to 

produce a wide array of widget with specific thermal, electrical, or mechanical properties can be 

readily fabricated in house. This would be especially useful in a situation where new supplies are 

difficult to come by. A hypothetical mars colonist could be self-sufficient with little more than a 

SL machine, a small chemistry set, and a creative imagination. 

Future Work 

There are several stages of work that have been uncomfortably delayed to this point due to 

temporary circumstances. The copper coating requires several quantitative measurements to 

determine the resistivity of the coating, as well as measurements of the mechanical strength of 

the shell as affected by the copper thickness. Beyond that, a length of straight, corrugated 

waveguide will be constructed and tests of signal loss will be done in an anechoic chamber. 

Beyond that, it is hoped that the technique will be able to be applied to building a profiled 

corrugated horn antenna, with the tests that accompany that. Several gadgets may also be built in 

parallel to this work.  

The time required to construct these devices is expected to be considerably short. As work has 

been delayed several times, design and theory have been developed considerably. Barring any 

further unexpected delays, it is expected that a waveguide will be constructed within a week of 

work resuming.  
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