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Abstract 

Agricultural runoff can be harmful to the environment by increasing soil erosion and flooding, while 

adding excess nutrients such as phosphorus to downstream waterways. Stormwater detention ponds are a 

common way to mitigate flood risk and improve water quality in urban areas. This concept has since been 

adapted to protect susceptible areas downstream of agriculture. Wetland vegetation can be planted around 

these ponds to uptake nutrients and slow water flow. Vegetation mapping is a frequent practice within land 

management to monitor health and species distribution. This process could be less labor-intensive if paired 

with the use of aerial imagery and computer-aided classification. Unmanned Aerial Vehicle (UAV) 

acquired imagery allows for high temporal and spatial resolutions that can map the environment in high 

detail and accuracy. Here we present a detailed workflow for species-level mapping from data acquisition 

in the field through image processing and analysis.  

 

Introduction      

Stormwater detention ponds have been used for over 60 years to mitigate urban runoff; this 

concept is now being applied to treat agricultural runoff as well. Ponds are constructed to detain 

water from surface flows or drainage tile networks and to capture eroded sediment and 

phosphorous from nearby agricultural fields. They can help also to protect sensitive water bodies 

downstream by taking up nutrients that can cause harmful algal blooms and eutrophication. 

The margins of the ponds can be seeded with wetland vegetation or allowed to naturally grow 

from the existing seed bank. Using the existing vegetation stock is low-cost and minimal 

maintenance, allowing several ponds to be managed at once. This vegetation helps to uptake 

nutrients and slow water as it flows through the system, and it mimics a natural wetland that 

supports diverse flora and fauna by providing habitat. However, since these ponds are unplanted, 

there is no control over the vegetation that is established. It is possible that some of the 

vegetation may include invasive species such as phragmites and purple loosestrife. Therefore, a 

way to map the types of vegetation quickly and accurately will be of great benefit to the pond 

managers, as monitoring the spread of these species over time is critical to developing a 

comprehensive management plan.  
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The plants that take up nutrients must be periodically harvested, as they will become a source of 

phosphorus when they decay. Determining the appropriate time for harvest can be made easier 

with the use of multi-spectral imagery, as the reflectance of plants change as they start to 

senesce. Multi-spectral imagery can provide land managers with data that is not visible to the 

human eye such as red-edge and near-infrared wavelengths, which are highly reflected by 

vegetation and indicate their health. Additionally, aerial imagery allows for the entire site to be 

surveyed at once, instead of having to traverse the site on foot through dense vegetation or make 

use of watercraft. Our objective was to develop a workflow that optimizes UAV flight 

parameters and ArcGIS Pro classification protocols to determine the most accurate process for 

mapping wetland vegetation using aerial imagery.  

Materials and Methods 

Study Site. The study site is an agricultural runoff pond and wetland system located in 

Buchanan, WI (44.268056° N, 88.199267° W). This system was designed by the Outagamie 

County Land Conservation Department in 2017 to improve water quality and protect 

downstream waterways such at Plum Creek, a tributary of the Fox River, which flows into Green 

Bay and Lake Michigan (Figure 1). The pond and wetland cover about 0.27 hectares (0.66 

acres), with a drainage area of 8 hectares (20 acres); 6.5 of which are agricultural and the other 

1.5 are residential. According to Hess et al. (2003), The dominant source of phosphates in 

surface water are phosphate-bound soil particles. Although they are not very soluble, studies 

have shown them to be transported by groundwater.  Runoff flows into the lower sediment basin 

1, where most of the eroded soil and phosphorus (soil-bound or dissolved) settles out. The water 

then continues to flow through the wetland cells and northern sediment basin 2 (shown in Figure 

1) where the rest is captured.  The gravel spreader bars also act to distribute water flow to avoid 

channel formation throughout the site. The Nature Conservancy received a grant to survey the 

site from 2018-2020 from which they compiled a comprehensive list of the different flora and 

fauna observed at the pond over time, demonstrating the rapid growth and establishment of 

species and the relationships between them. The United States Geological Survey (USGS) has 

also been monitoring the flow and composition of incoming water (surface and groundwater) as 

it enters and exits the site, particularly during storms. This monitoring tracks the efficiency of the 

pond to remove nutrients and suspended sediment from the water. 

 



   
 

 

 

Figure 1. Diagram of the water treatment pond. The yellow star on the inset map indicates the location in Buchanan, 

Wisconsin. GCPs are represented by red square targets, and the area of interest is outlined with a light-yellow line. 

Blue polygons in sediment basin 1 show examples of training sites for the class “water”. 

Field Methods. This study utilized a DJI Matrice 200 V2 drone paired with a multi- 

spectral MicaSense Altum 8mm camera which takes images in six different wavelength regions 

(red, green, blue, red-edge, near-infrared, and thermal). There was also a downwelling light 

sensor that measured ambient light and sun angle to correct for lighting changes that occurred 

mid-flight. This was paired with the use of a spectral calibration panel before and after each 

flight, which is used to calibrate the imagery during processing. Imagery was collected on seven 

different dates between June 22nd and August 1st to assess varying flight altitudes (20m, 30m, and 

50m), path orientations (east-west/north-south), and lighting conditions (full sun, overcast, 

morning/evening) to determine optimal flight parameters. We found the highest quality 

orthomosaic (ground sampling distance - GSD < 1cm) resulted from a 20m flight altitude with 

80% front and 75% side overlap. Having sufficient image overlap is important for computer 

photogrammetry. It was also found that the even, diffuse lighting conditions afforded by overcast 

weather were ideal for data collection to avoid shadows and sun glare which are common on 

clear days. With these flight parameters, there was also a reasonable image processing time of 

about 12 hours, which means that data can be collected during the workday and processed 

overnight.  

The flight images used for the data analysis in this study were collected on June 30th and August 

1st of 2022. In conjunction with the flights, we surveyed 31 ground control points (GCPs – shown 

in Figure 1) of which 22 were used for georeferencing, and the other 9 were used to validate the 

model results. The number and placement of the GCPs was determined based on the work of 

Chandler et al. (2018) that provided a GCP to image ratio and found that even dispersion of 

GCPs resulted in doubled accuracy in comparison to poor placement. Our GCP distribution was 



   
 

 

planned using ArcGIS Field Maps to ensure even and consistent spacing throughout the study 

site, which also provided a systematic approach to putting them out during each flight. The 

surveying was done using an Emlid Reach RS2 rover in real-time kinematic (RTK) mode and 

base established over known coordinates. All points were taken in a “Fix” status, meaning that 

the rover achieved the solution using all corrections from the base, which yields centimeter 

accuracy. To establish the base station, it was set to log data for about 5 hours which was an 

optimal amount of time determined from the literature (Grüner, 2020). The log was then 

submitted to Natural Resources Canada (NRCAN) for data post-processing and precise point 

positioning (PPP) in rapid mode for maximum accuracy.  

For accurate representation of the vegetation species found at the study site, we met with the 

county biologist to identify vegetation in the field. Sparse individual plants were left out, as they 

would be more difficult to see in the imagery, and they would potentially add noise into the 

classification. Instead, we focused on the most important and dominant species, and created 14 

classes (shown in Table 1) that were later combined into 11 overall classes for simplification. 

Classes that were spectrally similar (e.g., rice cutgrass and pink weed) and classes within the 

same species that were spectrally different (e.g., dead versus live cattails) were combined (Table 

1).  

Class Scientific Names Training site pixels (%) 

Thick Duckweed Lemna minor 10.45 

Thin Duckweed   11.71 

Narrow-Leaved Cattails Typha angustifolia 20.87 

Dead Cattails   0.63 

Rice Cutgrass Leersia oryzoides 7.59 

Pink Weed Persicaria pensylvanica 5.24 

Foxtail barley Hordeum Jubatum 4.45 

Purple Loosestrife Lythrum salicaria 0.23 

Northern Water Plantain Alisma triviale 2.57 

Phragmites Phragmites australis 0.98 

Swamp Verbena Verbena hastata 0.22 

Soft-Stem Bulrush Schoenoplectus validus 13.34 

Rocks   7.09 

Water   14.63 
Table 1. 14 total classes used for classification. Green, brown, and blue highlights show the 3 groups that were 

combined. Training site pixels (%) shows the pixel percentages of each class’s training sites out of the total amount. 

Lab Methods. The image processing and analysis workflow is shown schematically in 

Figure 2. Agisoft MetaShape was used for radiometric calibration, georectification of the images 

using GCPs, and creation of orthomosaics. To create an orthom2osaic, the software looks for 

points of contrast (key-points) that can be found in multiple images, also known as tie-points. 

These tie points are used to stitch the images together, which is why having sufficient image 

overlap is important. GCPs are used to reference the photos to real-world coordinates, which 

allows us to accurately stack and compare orthomosaics from different dates. 



   
 

 

The orthomosaic was uploaded into ArcGIS Pro 2.7.2, where training sites were made for each 

class. These sites are manually created polygons (water class examples shown in Figure 1) that 

contain spectral information for the computer to recognize each class. The software then 

classifies the rest of the image (non-training sites) through comparison with the spectral profiles 

of each training site. Training site coverage for each class can be seen in Table 1. These sites 

were also used to generate spectral signatures that were used to analyze differences and 

similarities in reflectance between classes, and to choose the spectral bands that maximize those 

differences for the best classification results. 

Three different classification methods were evaluated to determine which was the most accurate: 

Deep Learning, Unsupervised, and Supervised. Deep learning was reported to be an effective 

way to incorporate more than three bands into one classification, which is a notable limitation in 

the ArcGIS Pro framework (Abd-Elrahman et al., 2021); however, we found the results were 

poor. Only the dominant species with the largest training site pixel percentage would be 

classified satisfactorily, with misclassification being common among the classes with a smaller 

training site pixel percentage (Table 1). Increasing the area of the smaller training sites may 

improve the result, but we did not test this.  

  

Figure 2. Methodology flow chart. Green shading indicates the path taken though the Classification Wizard in ArcGIS 

Pro using supervised object-based learning and the random forest algorithm. 



   
 

 

ArcGIS Pro has two primary classification schemes: supervised and unsupervised. The 

unsupervised creates its own image classes by classifying together like objects according to a set 

number of max potential classes while the supervised uses premade classes and training sites. 

Within each of these schemes the computer can use a pixel or object-based approach. Object-

based classification involves segmentation, where pixels are grouped into clusters or “objects” of 

similar pixels, and then those objects are classified. Pixel-based approach looks only at the 

individual pixel and disregards its location and neighbors. The pixel-based approach was not the 

best fit for this study as it introduced speckle and noise into the classification, also known as the 

“salt-and-pepper" effect (Blanchard et al., 2011). This is because neighboring pixels of the same 

vegetation type can be highly contrasting, leading to higher misclassification.  

The segmentation parameters were set to have high spectral detail and low spatial detail. This 

tells the software that pixels must be highly alike to be grouped together into “objects”, and that 

not all similar features are necessarily clustered together.  

Unsupervised was not ideal for this study as seasonal changes and varied lighting conditions may 

cause significant differences in classification results. This makes the results inconsistent and 

non-repeatable. After comparing numerous iterations, supervised object-based was settled on as 

this provided the most accurate results. The supervised classification method allowed for 

application of the random forest algorithm, whereas the unsupervised method was restricted to 

the Iterative Self Organizing (ISO) scheme. Similar studies achieved superior results using 

random forest (Cai et al., 2021; Ahmed & Franklin, 2018; Lu & Yuhong, 2017). In this study, 

the random forest parameters were set to have a high number of trees (300), this means the 

algorithm ran 300 different decision tree models at once to explore all the possible classification 

outcomes for a given pixel. Having a higher number of trees means that the algorithm has 

considered more possibilities, making the classification more informed and accurate. We also 

increased the tree depth from the default of 30 to 60, this is related to how many times each 

decision tree is split. Having a low value can result in an over-simplified or biased analysis, 

while if the value is too high it can make the analysis too complex which adds noise into the 

classification. 

Results     

Spectral Signatures. To determine the optimal bands to use for classification, the 

spectral signatures for the 14 different vegetation classes were analyzed. These spectral 

signatures show the reflectance of the classes across five band wavelengths for reflected light. 

The thermal band was not included because of the poor spatial resolution and topographic 

effects, where vegetation on the south facing slopes warms more than the others. This effect 

would confuse the classifier. Figure 3 demonstrates the similarities and differences across the 

bands for five land cover types. The ordinate shows radiometrically calibrated spectral 

reflectance values, and the abscissa shows the different bands of light the instrument records. 

Note that all plant types exhibit low reflectance in blue and red wavelengths, while reflecting the 

green wavelength; this is why plants appear green to our eye. The dolostone rocks used in the 

inflow area and spreader bars in contrast reflect roughly equally in all visible wavelengths and 

therefore appear white (Figure 1). Interestingly, plants are very highly reflective beyond the 

visible range in the red-edge (RE) and near infrared (NIR) wavelengths. It is in these longer 

wavelength regions that the largest differences in reflectance were observed between each of our 

classes. Having large spectral differences in the classes is important because it aids the computer 



   
 

 

in distinguishing between them. For example, the Phragmites and Rice Cutgrass are similar in 

the visible range and cannot be distinguished based on color alone, however there is some 

separation of the reflectance in the NIR and RE regions. Based on these observations we chose to 

use the NIR and RE bands for our classification input.  

Figure 3. Spectral profiles for five different classes from imagery collected on June 30, 2022 (A) and August 1, 2022 

(B). 

Classification Maps. The classified orthomosaics show the distribution of wetland plants 

at each date for which data was collected (Figure 4). By comparing maps on different dates, we 

can observe changes over time. For the June 30th flight (Figure 4a), there are three dominant 

species: duckweed, cattail, and bulrush. By August 1st, the bulrush was overtaken by rice 

cutgrass and pink weed (Figure 4b). Additionally, there was an expansion of duckweed, rice 

cutgrass and phragmites, the latter of which is a problematic invasive species. Detection of 

phragmites was an important finding, as the cluster was hidden when observing from the ground 

due to surrounding vegetation. This suggests that use of aerial imagery can help to reveal hidden 

species that may have been challenging to reach on foot.  

 



   
 

 

 

Figure 4. Classification output of June 30th (A) and August 1st (B) imagery using supervised object-based, random 

forest algorithm, and near-infrared and red-edge bands in ArcGIS Pro. 

Accuracy Assessment. To quantify the accuracy of the classification, the classified and 

actual values for 140 stratified randomly generated points were manually compared. From this, a 

confusion matrix was created which helps visualize and inform which points were accurately 

classified (on-diagonal) and which ones were misclassified (off-diagonals) within each class 

(Table 2). The overall accuracy is a ratio of the number of correctly classified points to total 

number of points (shown where user’s and producer’s accuracy meet in Table 2). The kappa 

reflects the difference between observed accuracy and chance accuracy. For example, a kappa of 

0.84 means there is 84% better agreement than by chance alone. Additionally, user’s and 

producer’s accuracy give individual accuracy measures for each class. User’s (rows) is 

associated with the real ground cover and error of commission (inclusion); for example, the 

cattail row in Table 2 shows that 19 pixels were correctly identified as cattails, while the other 3 

were incorrectly included in that class when they were truly barley, phragmites, and bulrush. The 

user’s accuracy for cattails then is a ratio of correct pixels to total pixels claimed to be in that 

class, so in this case, 19/22 = 0.86. On the other hand, producer’s accuracy (columns) is 

associated with the classification schema and error of omission (exclusion), so the cattail column 

shows that 19 pixels were correctly identified as cattails, while 9 were incorrectly excluded from 

cattails and assigned to other classes.  

After determining high accuracy for the June 30th flight, the same classification was applied to 

the August 1st flight to assess its reproducibility. We found this workflow to be robust as the 

imagery from August 1st yielded similar accuracies of 81% total and a kappa of 0.78. The 

accuracies attained from these classifications are comparable with other literature findings (Cai 

et al., 2021; He & Lu, 2017) which involved similar analysis and vegetation classification. 

 



   
 

 

 

Table 2. Confusion matrix for the 06/30 classification with an overall accuracy of 86% and kappa of 0.84. 

Discussion 

Although we have developed a workflow to map wetland vegetation quickly, consistently, and 

accurately, two shortcomings to this method were discovered. The large amount of spatial and 

spectral variation in the plants over time requires manual interpretation and input to maintain 

training sites for the algorithm. For example, some of the water training site examples shown in 

Figure 1 worked for classification in late June (Figure 4A), but not in early August (Figure 4B), 

since the duckweed has expanded substantially over the water. The spectral signatures of land 

cover also change over time. The thin duckweed and rocks are distinct in the Red-edge and NIR 

bands in June (Figure 3A) but grew more similar over time (Figure 3B), which makes it difficult 

for the computer to distinguish them. The spatial and spectral changes over time mean that this 

workflow cannot be fully automated, however updating the training sites is a relatively 

straightforward adjustment to make. 

Another limitation of this study was the classification scheme within ArcGIS Pro, which can 

only use 3 spectral bands (rather than the 6 recorded by the instrument). More flexible software 

could manage additional bands as well as including topographical information; however, we 

found our results yielded comparable accuracies to studies that did incorporate additional data 

(e.g., Heilman et al., 2018). Further research could explore these possibilities, but nonetheless, 

this study shows that the use of simpler software can still yield trustworthy results.   
   

While the main purpose of these ponds is to improve water quality, tracking vegetation at these 

sites is important for land management and can be used to inform stakeholders on the natural 

establishment of wetland species, and to monitor the spread of invasive species. The significant 

spatial and spectral changes over the course of a month suggest that change can be detected and 

monitored throughout the growing season and likely over a period of years. The ability of geo-

rectified UAV-imagery to map these changes supports future application of this technique for 

wetland vegetation mapping in larger ponds, which may not be as easily accessible by other 

means.  

Conclusion 

During this study, our team worked to find optimal flight parameters for our goal of species-level 

vegetation classification. It was found that a low altitude height (20m) produced a highly detailed 

orthomosaic with resolution of less than 1 cm per pixel at a cost of about 12 hours of processing 

time. Overcast weather for flights provided even, consistent lighting and avoided the shadows 



   
 

 

and sun glare that occur on a cloudless day. Adding GCPs created an elevated level of geospatial 

accuracy which allowed for straightforward comparison between different sets (dates) of data. 

We then found that the red-edge and near-infrared bands provided the highest amount of spectral 

spread for distinguishing between classes. By combining the determined flight parameters and 

bands with supervised object-based classification and random forest algorithm, we were able to 

achieve our highest classification accuracy of 86%. The accuracy of these classifications can 

vary based on changes in plant growth patterns and spectral variations that occur as the plants 

mature, however minor adjustments in the training sites can compensate for this. Overall, this 

process was found to be a robust and reproducible tool for monitoring and delineating wetland 

vegetation species. 
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