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Abstract: 

This project strives to study the relationship between the group environment and individual galaxy properties. Group 
richness is used as a proxy for different environmental conditions and mass to form a sample of 40 low mass 
(3 ≤ 𝑁 < 10), 40 medium mass (10 ≤ 𝑁 < 20), and 40 high mass (20 ≤ 𝑁) groups from the Berlind et al. 2006 
volume-limited Mr18 catalog and Tempel et al. 2014 flux-limited catalog. Unique color-magnitude-position and 
color-stellar mass-position diagrams are produced for each sample group. I identified dynamically active and 
inactive groups using the magnitude gap through a version of methodology described in Raouf et al. 2019. Project 
figures are used to analyze how BGG properties, dynamic activity, and group appearance depend on group richness. 
Analysis focuses on BGGs to understand how one evolutionary mechanism, mergers, is impacted by basic 
differences in a group’s environment. 
 
INTRODUCTION:  
Like other matter in the universe, galaxies gather hierarchically in gravitationally bound 
structures that are larger than themselves (White & Rees 1978). One of these structures is galaxy 
groups, which themselves are fundamental substructures of clusters and superclusters. Galaxy 
groups contain 3-50 gravitationally-bound galaxies and hot or warm gas that exists between 
them, known as the intragroup medium (IGrM). Numerous studies confirm that most galaxies in 
the local universe (𝑧 < 1) reside and evolve in galaxy groups (Geller & Huchra 1983, Tully 
1987, Eke et al. 2004, Yang et al. 2007, Tago et al. 2008). Galaxy groups continue to 
demonstrate their utility for studying galaxy evolution in the local universe.  
 
The evolution of galaxies in groups is closely related to their local environment. The group 
environment is the unique local condition in a galaxy group produced by the members of the 
group and the IGrM, though it is defined differently in many studies. Galaxy-Galaxy interactions 
and Galaxy-IGrM interactions occur at higher rates in dense environments, acting to drive the 
evolution of galaxies in groups (Dressler 1984, Just et al. 2010, Freeland et al. 2009). The IGrM 
and member position, density, and velocity dispersion determine which mechanisms are most 
important in driving the evolution of a galaxy (Just et al. 2010). Ram pressure stripping, 
starvation and tidal interactions act on satellite galaxies, while mergers or accretion form 
brightest group galaxies (BGGs): dormant, early-type galaxies that are the most luminous and 
massive members of their group (Shen et al. 2014, Mahtessian et al. 2017). These mechanisms 
quench galaxy gas content to produce red, quitescent, E/S0-dominated galaxy populations in 
groups and alter the group environment (Dressler 1980, Cooray 2005). Member galaxy 
properties such as color, morphology, and star formation rate (SFR) are altered by evolutionary 
processes and correlated with the group environment, though the specifics of this complex 
relationship are poorly understood (Helsdon & Ponman 2003, Freeland et al. 2009, Tempel et. al. 
2017). By using group richness as a proxy for different environmental conditions, this project 
and Fosdick 2020 explore how individual galaxy properties depend on the richness of their host 
group.  
 
Like other members of galaxy groups, BGG properties are influenced by the group environment 
(Shen et al. 2014, Luparello et al. 2015). The magnitude gap 𝛥𝑀!12 is the difference in r-band 
absolute magnitude between the 1st and 2nd brightest galaxies. When combined with the 



 

 

magnitude gap, BGGs can be used to identify historical or current evidence of mergers: galaxy-
galaxy interactions that cause starbursts and increased SFR in a galaxy group’s central galaxy. 
The magnitude gap may be a crude indicator of a group’s dynamic age, the amount of time a 
group has been dynamically active. The magnitude gap is interpreted through BGGs. A larger 
magnitude gap generally indicates more mergers have occurred to increase the mass of the BGG 
and that the group has been dynamically active for longer. A large magnitude gap may indicate 
accretion onto the BGG has stopped. BGGs in unrelaxed groups are bluer at specific 
wavelengths and have higher star formation rates (SFR) than those in relaxed groups, indicative 
of environments with frequent mergers (Raouf et al. 2019). This project uses the properties of 
BGGs, unrelaxed, and relaxed groups to study the effects of group richness on mergers. 
 
SAMPLE: 
This project uses a sample of 120 galaxy groups separated into three mass categories: high mass 
groups (𝑁 ≥ 20 members), medium mass groups (10 ≤ 𝑁 < 20 members), and low mass groups 
(3 ≤ 𝑁 < 10 members). Twenty groups in each richness category are selected from two galaxy 
catalogs separately to produce a 60 group sample from each catalog. One of these galaxy 
catalogs is the Mr18 group catalog described in Berlind et al. 2006. Berlind et al. 2006 produced 
this volume-limited catalog using a friends-of-friends algorithm from galaxies in the 3rd SDSS 
data release (DR3), with a limiting magnitude 𝑀! =	−18 (Berlind et al. 2006). I also obtained 
sample groups from the Tempel et al. 2014 flux-limited catalog, containing member galaxies 
from the 10th SDSS data release (DR10) and a modified friends-of-friends algorithm. While the 
Tempel et al. 2014 flux-limited catalog is complete below 𝑀! =	−18, its limiting magnitude of 
𝑀! = 17.77 allows for the observation of dimmer galaxies than those in the Berlind et al. 2006 
volume-limited catalog. These catalogs provide complete position, redshift (z), color (g-r), and  
𝑀! data for each member galaxy. Overall, the project sample contains 1812 galaxies. A table 
listing all groups in the project sample is given in Supplemental Files. 
 
Both catalogs have effects that impact the sample data. To account for 𝑀!, g-r, and z data lost 
through fiber collisions or survey edge effects, Berlind et al. 2006 replaced missing data with 
that of a galaxy’s nearest neighbor in the group. However, this correction creates repeat galaxies, 
affecting 4% of the project sample, causing a slight bias in project g-r and 𝑀! 	data. The Tempel 
et al. 2014 group eliminated member galaxies with extraneous colors from their catalog. I 
removed three Tempel et al. 2014 galaxies with outlying color data from the project sample. This 
correction caused the magnitude gap to be incalculable for one group. Generally, since SDSS 
data releases are cumulative, I expect Tempel et al. 2014 groups to be more complete than Berlin 
et al. 2006 groups. Data incompleteness is an issue in the project sample. 82% of project galaxies 
have log stellar masses returned by SDSS. This data is complete for 70% of BGGs. 
Morphologies are known for 60% of sample galaxies and 70% of BGGs.  
 
METHODS: 
I used the following computational and graphical methods during this project. I include 
amendments to methods described in detail in Fosdick 2020 under their Fosdick 2020 headings. I 
used methods listed under “Figures” in Fosdick 2020 to produce the project’s 240 color-
magnitude-position and color-stellar mass-position diagrams. 
 



 

 

SDSS Queries: I made SDSS queries using SDSS DR8 ObjIDs from the Tempel et al. 
2014 catalog and DR8 ObjIDs assigned to Berlind et al. 2006 galaxies using SDSS 
SkyServers’s CrossID tool. I queried SDSS DR16 for Conroy et al. 2009 best-fit log stellar 
masses for all sample galaxies. I sourced morphological classifications for Berlind et al. 
2006 galaxies from Galaxy Zoo (Lintott et al. 2010), while I used in-catalog morphologies 
described in Tempel et al. 2011 for Tempel et al. 2014 galaxies. 
 
Magnitude Gap, BGG, Relaxed/Unrelaxed groups: I calculated the magnitude gap, 
𝛥𝑀!12 = 𝑀!2 −𝑀!1by subtracting the r-band absolute magnitude of a group’s brightest 
galaxy from the r-band absolute magnitude of the 2nd brightest galaxy. The BGG is the 
galaxy with the group’s brightest 𝑀! value. I identified relaxed and unrelaxed groups using 
the magnitude gap criterion in Raouf et al. 2019. Raouf et al. 2019 identify groups with a 
high magnitude gap, 𝛥𝑀!12 	≥ 	1.7, as dynamically inactive or relaxed while those with a 
low magnitude gap, 𝛥𝑀!12 	≤ 0.5 as dynamically active or unrelaxed. These classifications 
are corroborated by Dariush et al. 2010. 
 
Stellar Mass Scaling: To scale galaxy markers by their stellar masses in Figures 1-240, I 
exponentiated SDSS best-fit stellar log masses by a base 10 to produce best-fit stellar 
masses for each galaxy. I multiplied member galaxy best-fit stellar masses by an arbitrary 
factor of 6 × 10"9 to make them visible when plotted. I used group member best-fit stellar 
log masses to produce color-stellar mass-position diagrams. Best-fit stellar log mass data 
is incomplete for the project sample. As a result, some project sample galaxies are missing 
in these figures. 
 
Magnitude Scaling: I replaced the arbitrary scaling factor of 20 in Fosdick 2020 with 25 
in this project to fit the expanded project sample better. 

 
KEY RESULTS: 
The project’s 240 figures (located in Supplemental Files) allow me to compare the group 
environment across an extensive range of conditions. Differences between the samples from each 
project catalog become evident in these figures. Generally, Tempel et al. 2014 galaxies are bluer 
than those in the Berlind et al. 2006 catalog. This effect is especially apparent in the high mass 
sample, but it is present in all richness categories. In Fosdick 2020, I noted a negative correlation 
between the r-band luminosity of member galaxies and their g-r spread color in the Berlind et al. 
2006 high mass sample. As the luminosity of sample galaxies increased, the corresponding 
sample galaxy color became progressively redder with a smaller g-r range. I postulated in 
Fosdick 2020 that this trend was caused by a bias towards redness in the Berlind et al. 2006 
catalog and that highly luminous galaxies with g-r < 1 were missing from this sample. My 
hypothesis is corroborated by some high mass Tempel et al. 2014 groups. Tempel et al. 2014 
introduces many galaxies with small r-band luminosities, small stellar masses, and relatively blue 
g-r colors (g-r < 0.4) to the project sample. This introduction does not suggest that limiting 
magnitude causes a red bias in the Berlind et al. 2006 groups, as both catalogs are complete to 
𝑀! =	−18, and extreme reddening is not observed in Tempel et al. 2014 groups for large 
𝑀!values.  
 



 

 

The most luminous galaxies in the sample are found in high richness groups. They are not 
always the reddest galaxies in the project sample, with g-r ≥ ~ 0.8. Tempel et al. 2014 groups 
have bluer BGGs than Berlind et al. 2006 groups. Notably, the luminosity of BGGs seem to 
depend weakly on the richness of their host group. As the richness of my subsamples increases in 
Table 1, the r-band luminosity of a group’s brightest members tends to brighten by about one 
magnitude. This general dependency suggests that member density, a property of the group 
environment, may impact the luminosities of BGGs. This result should be checked with more 
narrowly defined richness subsamples. This result indicates the importance of mergers in the 
formation of BGGs, as more massive groups allow more luminous and massive BGGs to form. 
While this has not been confirmed, Tempel et al. 2014 groups seem to contain fewer luminous 
galaxies than Berlind et al. 2006 groups of the same richness category. Differences in each 
catalog’s completeness may cause this trend. Tempel et al. 2014 groups contain the most 
luminous galaxies in the sample. These findings may change if either catalog sample was 
isolated and observed for these trends independently, although my analysis suggests this 
dependency exists in both catalogs independently.  
 
Like the luminosity of BGGs, the probability that a group is relaxed or unrelaxed seems to 
depend on its richness. In the low mass sample, 30% of galaxy groups are unrelaxed and 25% of 
galaxy groups are relaxed, according to their magnitude gap and criterion outlined by Raouf et 
al. 2019. In the medium mass sample, 48% of galaxy groups are unrelaxed and 8% are relaxed. 
In the high mass sample, 43% of groups are unrelaxed and 3% are relaxed. Medium and high 
mass groups seem to host more dynamic activity in The Local Universe, suggesting relatively 
rich groups provide environments where galaxy evolution and group change are more likely to 
occur. The dynamic activity of a galaxy group seems to depend, at least weakly, on the group’s 
richness. Future work will examine the implications this result has on group formation. 
 
Similar characteristics of dynamically relaxed and unrelaxed groups of all richness categories are 
illustrated by Figures 1-12, a selection of the 240 color-magnitude-position and color-stellar 
mass-position diagrams produced for each group in the total project sample. Unrelaxed groups 
tend to manifest physically in two different ways. Class I occurs when two or three galaxies in an 
unrelaxed group have similar Mr values that are noticeably larger than those of surrounding 
members. The Mr values of these galaxies are similar enough that they appear to be “competing” 
for the title of BGG. The BGG designation may be evident, but the BGG is only slightly brighter 
than other luminous galaxies in the group. Class I unrelaxed galaxy groups are observed in 
Berlind et al. 2006 groups 82 (Fig. 2), and 120 and Tempel et al. 2014 groups 8, 39 (Fig. 1), and 
49. Tempel et al. 2014 groups 115 (Fig. 7) and 221 are obvious Class I galaxy group examples. 
Nothing about the Tempel et al. 2014 catalog suggests a possibility for repeated galaxies in 
Tempel et al. 2014 groups 115 and 221. Class II occurs in unrelaxed galaxy groups where most 
group members have similar Mr values and no notable BGG, or when 4-5+ members fit the 
criterion of Class I and compete for the BGG designation. Similar member galaxy g-r colors may 
be expected in Class II groups, though this requires further confirmation. Class II galaxy groups 
are observed in Berlind et al. 2006 groups 24 (Fig. 3), 71, 1412, and 3896 (Fig. 5), and Tempel et 
al. 2014 group 24 (Fig. 4). Notably, these selected groups have no fiber collisions or few fiber 
collisions that don’t alter the defining characteristic of Class II galaxy groups. I found it easiest 
to identify Class I galaxy groups in low mass groups and Class II galaxy groups in high mass 
groups. I found examples of both classes in all richness categories. The identification of these 



 

 

effects is subjective and requires further development and codification. Some unrelaxed galaxy 
groups appear to present a melding of the two classes, such as Berlind et al. 2006 group 1039, 
3064 (Fig. 6), and 9722. But the two defining features of Class I and Class II galaxy groups are 
obvious and differentiable when compared in their extremes. The designation of an unrelaxed     
galaxy group as Class I or Class II does not seem to depend on the group’s magnitude gap. 
 
Relaxed groups are characterized by more homogeneous properties than unrelaxed groups. 
Relaxed or Class III galaxy groups contain one obvious BGG with an r-band absolute magnitude 
𝛥𝑀!12 larger than the 2nd brightest member galaxy. Tempel et al. 2014 group 224 (Fig. 10) is an 
example of a Class III galaxy group. BBGs in Class III groups range in magnitude from 
−21.625	 ≤ 𝑀! ≤	−19.090. When log stellar-mass data is available, BGGs are the most massive 
members of Class III groups. Surprisingly, of the nine Class III BGGs with morphological 
classifications, 78% of these BGGs are spiral galaxies. BGGs in Class III groups are also 
relatively blue. With g-rmin = 0.533, 64% of relaxed BGGs have g-r < 0.8. Tempel et al. 2014 
groups 21, 33, 37, and 40 have anomalously high magnitude gaps. Missing galaxies below the 
catalog’s completeness threshold of 𝑀! =	−18	likely explain these outliers. 
 
Intermediate Class IV groups with 0.5 < 𝛥𝑀!12 < 	1.7 are neither relaxed nor unrelaxed. One 
BGG is usually identifiable in these groups, though other members have comparable 𝑀! values, 
as illustrated by Berlind et al. 2006 group 8245 (Fig. 9) or 1415. 
 
BGGs in intermediate and unrelaxed groups throughout the sample tend to have larger stellar 
masses than their relaxed counterparts at comparable Mr values, as demonstrated in Figures 7-12. 
This trend is discussed briefly in Fosdick 2020 and is seemingly unaffected by group richness or 
BGG color. Larger BGG log stellar masses in intermediate and unrelaxed groups may reflect 
differences in the galaxies’ star formation histories or stellar populations. 
 

BGG 𝑀! −23 < 𝑀! ≤ −22 −22 < 𝑀! ≤ −21 −21 < 𝑀! ≤ −20 −20 < 𝑀! ≤ −19 

Low Mass  18% 40% 43% 

Medium Mass  40% 50% 8% 

High Mass 18% 58% 20%  
 
Table 1: Richness Category v. BGG r-band Absolute Magnitude Table 
The percentage of BGGs in each absolute magnitude bin, 𝑀!, contains the brightest BGGs in each mass sample. 
Each project subsample has 40 galaxy groups. Some 𝑀! bins that contain BGGs are not included. 
 
DISCUSSION: 
My extension of Fosdick 2020’s project sample further confirms that galaxies in groups are 
primarily red, as demonstrated by an abundance of positive g-r colors in the project sample. 
Upon comparison, the Tempel et al. 2014 catalog seems to confirm that g-r color data from the 
Berlind et al. 2006 catalog has a red bias. The Tempel et al. 2014 flux-limited catalog introduces 
luminous galaxies (−22 < 𝑀! < −21) with g-r ≤ ~0.8-0.85 that Fosdick 2020 hypothesized the 
Berlind et al. 2006 catalog was missing. Tempel et al. 2014 introduces blue galaxies (g-r > 0) and 
relatively blue galaxies (g-r < 0.4) expected to form ~10% of the galaxy population in high 



 

 

density environments (Dressler 1984). These galaxies were largely absent from the Berlind et al. 
2006 sample. The project sample’s Mr  = -18 limiting magnitude and catalog incompleteness may 
disproportionately eliminate blue galaxies. 
 
BGGs are an essential focus of this project. BGG luminosity seems to depend weakly on group 
richness. Since BGGs grow via the accretion of satellite galaxies in a group or cluster, it makes 
sense that groups with more mass will have more massive, brighter BGGs. The weak 
dependency of BGG luminosity on group richness may be affected by evolutionary mechanisms 
that operate on satellite galaxies. Additionally, the mass categories used in my analysis contain a 
broad range of N group members. A more apparent dependency between richness and BGG 
luminosity may become evident by examining this relationship through a function of N instead 
of broad mass categories.  
 
Where morphological data is available, a surprising number of BGGs, especially in dynamically 
relaxed groups, are spirals. Generally, spiral galaxies contain high neutral atomic and molecular 
gas content uncharacteristic of multiple mergers. Mergers are expected to exhaust the galaxies’ 
atomic and molecular gas content. BGGs are typically S0 galaxies with red g-r colors, low SFR, 
and depleted gas content. S0 galaxies are usually found in intermediate-density environments, 
potentially explaining the frequency of spiral BGGs in relaxed groups. Most relaxed groups are 
found in the low mass project subsample, which contains groups that are richer than the field, but 
less rich than high or medium mass groups (Dressler 1984). Raouf et al. 2019 found a higher 
concentration of early-type galaxies in relaxed groups, indicating environmental effects  
could cause my results, though Mahtessian et al. 2017 corroborate that I expect more spiral 
BGGs at 𝛥𝑀!12 > 1.5.  
 
Group dynamic activity appears to be related to group richness. The number of relaxed Class III 
groups in my project sample drops off sharply with increased richness. The fraction of unrelaxed 
groups increases with richness, though I need to establish a more evident dependency on N group 
members. Project data suggests that high mass groups are the most dynamically active, 
corroborating current knowledge that the frequency of evolutionary mechanisms increase in 
denser groups. Notably, this project identified one class of relaxed groups and two classes of 
unrelaxed groups. Class III relaxed galaxy groups contain one BGG that is notably brighter than 
surrounding members (Shen et al. 2014). I identified two classes of unrelaxed groups in all 
richness categories. Class I unrelaxed galaxy groups have two or three members with comparable 
luminosities that are larger than the luminosities of other group members. All member galaxy 
luminosities are comparable in Class II groups. Both trends seem independent of the magnitude 
gap and known sample biases. Trends characterized by the Class I and Class II designations of  
dynamically active groups may be related to evolutionary mechanisms that act on satellite 
galaxies. I do not explore satellite galaxy interactions in my BGG-focused analysis properly. 
Further analysis of member velocity dispersions and positional data and comparison to group 
formation simulations may aid in determining the physical meaning behind the unrelaxed, 
intermediate, and relaxed galaxy group classes. 
 
Figures 1- 7, 9, 11: Color-Magnitude-Position Diagrams (Selection) 
Member galaxies (o) plotted for their ΔRA or ΔDEC positions defined in Fosdick 2020 around the group’s center 
(x). Each marker is scaled for the member galaxy’s r-band absolute magnitude as described in Methods.  Marker 
color corresponds to the member galaxy’s g-r color. Legends are made transparent when they obscure figure data.  



 

 

 



 

 

 



 

 

Figures 8, 10, 12: Color-Stellar Mass-Position Diagrams (Selection) 
Member galaxies (o) plotted for their ΔRA or ΔDEC positions defined in Fosdick 2020 around the group’s center 
(x). Each marker is scaled for the member galaxy’s logarithmic stellar mass as described in Methods.  Marker color 
corresponds to the member galaxy’s g-r color. Legends are made transparent when they obscure figure data.  
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