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Abstract  
The common envelope phase in binary star systems is simulated using the 3-D moving-mesh 
hydrodynamic code MANGA. Improvements to MANGA to improve accuracy and computation time are 
discussed. Two open questions in the physics of common envelope evolution are investigated. The effects 
of tidal forces present before the onset of a common envelope phase are explored by comparing 
simulations in which the giant star is initialized with varying degrees of rotation. The role of hydrogen 
recombination energy is investigated by using two different equations of state, only one of which includes 
the effects of recombination. Rotation is shown to increase the final binary separation, while 
recombination energy decreases the separation. Future improvements to MANGA to capture additional 
physics present in common envelopes are discussed.  

1. Introduction  
Common envelope evolution (CEE) is a phase during the life of a binary star system in which a 
giant star shares its gaseous envelope with a smaller companion object: a small star or a stellar 
remnant (for a review see Ivanova et al. 2013). The transfer of orbital energy and angular 
momentum from the giant’s core and companion to the gas drives partial or complete ejection of 
the envelope from the system. This, in turn, causes the separation between the core and companion 
to decrease. This process is important for the formation of X-ray binaries, double white dwarfs, 
and double neutron stars, and may also be responsible for the merging black hole systems observed 
by Advanced LIGO (Ivanova et al. 2013). Despite its importance, CEE is not well understood, and 
this is due in part to the number of different physics that must be included as well as the range of 
time-scales involved. Furthermore, there is uncertainty as to whether the contributions from 
recombination and radiation energy should be included. Because of these challenges, our current 
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understanding of CEE is limited at best. An important parameter here is the ejection efficiency: 
the fraction of the mass of the envelope that is ejected during the common envelope phase. 

Generally, it is treated as a free parameter that one can vary to produce the desired results based 
on population synthesis modeling, a highly undesirable state of affairs.  

In the presence of the different physics and time-scales, astronomers have mainly employed 
conserved quantities – energy and angular momentum – to roughly model CEE. These are known 
as the energy formalism (Webbink 1984) and the angular momentum (or γ) formalism (Nelemans 
et al. 2000). Because of the uncertainties in theoretical modeling of CEE, we bring numerical tools 
to bear. To perform 3-D simulations of CEE, two main approaches are used. The first is smooth 
particle hydrodynamics (SPH), where fluid quantities are determined from a finite sampling of 
nearby particles. SPH is computationally inexpensive and obeys conservation laws well, but the 
smoothing means that it has difficulty in handling discontinuities (i.e. shock waves). The other 
approach is Eulerian grid-based solvers, which are superior at capturing shocks but suffer from 
grid effects and violation of conservation laws (Springel 2010).  

The defining numerical studies are those carried out by Passy et al. (2012), Ricker & Taam (2012) 
and Nandez et al. (2015). These simulations generally find a wide variation in efficiencies from 
about 5 to 100 per cent. Nandez et al. (2015) use a SPH code, Passy et al. (2012) use both a SPH 
and an Eulerian code and Ricker & Taam (2012) use an adaptive mesh refinement Eulerian code.  

In recent years, a hybrid of these methods has been developed in an attempt to capture the best 
characteristics of both. This is the arbitrary Lagrangian-Eulerian (ALE) scheme, and software that 
use ALE schemes are known as moving mesh codes. In an ALE scheme, the mesh moves along 
with the fluid, combining the superior shock-capturing of grid-based solvers with the conservation 
properties of SPH. Springel (2010) described one such scheme that has proven successful, which 
is implemented in the code AREPO. The scheme constructs an unstructured mesh from an arbitrary 
distribution of points using a Voronoi tessellation. This guarantees that the mesh will be well 
defined, unique and continuously deformable; thus, finite volume methods can be applied in a 
manner similar to that of an Eulerian code. In addition, the lack of Galilean invariance in Eulerian 
codes is rectified if the mesh cells move along with the local flow. It has also been argued that 
ALE schemes are superior at capturing boundary layer instabilities such as Kelvin-Helmholtz 
instabilities (Springel 2010), though Lecoanet et al. (2016) cautioned that numerical noise can 
masquerade as solutions of such instabilities. Although AREPO was originally developed with 
cosmological simulations in mind, it has also been used in a number of problems including stellar 
mergers (Zhu et al. 2015) and common envelope evolution (Ohlmann et al. 2016). A moving-mesh 
hydrodynamic solver has also been developed for the N-body simulation code ChaNGa (Charm 
N-body GrAvity solver) (Jetley et al. 2008, 2010; Menon et al. 2015). This moving-mesh solver is 
known as MANGA, which is is described in detail by Chang et al. (2017). ChaNGa uses the 



superior Charm++ framework for parallel computation rather than a custom MPI interface, 
allowing it to scale to up to 500,000 cores (Menon et al. 2015). MANGA has been validated on 
several test problems, including the Sod shock tube, Sedov-Taylor blast wave, Gresho-Chan 
vortex, and Evrard collapse. It was also successfully applied to hydrostatic stars and stellar mergers 
(Chang et al. 2017). In Prust & Chang (2019, hereinafter PC19), we incorporated individual 
timesteps into MANGA and showed that this results in a speedup of a factor of 4 to 5 for a CEE 
simulation.  

One of the key advantages of MANGA over similar codes is its ability to seamlessly switch 
between various numerical schemes and equations of state (EOS), which makes it easy to compare 
physical models (Chang et al. 2017). An adiabatic EOS for the gas, P  ργ where γ is the adiabatic 
index, was originally implemented in MANGA. This simple EOS has been used in a number of 
simulations by previous groups (Ricker & Taam 2012; Ohlmann et al. 2016), which found an 
ejection efficiency of only 5% to 25%. This differs from the large implied values of ejection 
efficiency from observational studies, which suggests the existence of some additional energy not 
accounted for in the simulations. One candidate for this is the energy provided by hydrogen 
recombination in the outer envelope. More realistic EOSs can allow us to capture the additional 
effects of recombination. For instance, Nandez et al. (2015) found that including recombination 
energy leads to a complete ejection of the envelope. However, Nandez et al. (2015) also found an 
ejection efficiency of 50% without recombination energy, which is much higher than in previous 
studies. This makes it easier to eject the rest of the envelope with the inclusion of recombination 
energy. We suspect the reason for their high efficiency is the low resolution of their simulations 
and relatively primitive numerical schemes. To this end, we have also adapted the EOS 
implemented in the stellar evolution code MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019) for 
use in MANGA, as described in PC19. The MESA EOS relies on several equations of state relevant 
over the different regimes of stellar structure and allows us to capture the effects of hydrogen 
recombination energy.  

During the phase leading up to CEE, tidal forces from the companion on the envelope are expected 
to spin up the rotation of the envelope (Soker 1996) to a significant fraction of its breakup velocity. 
However, this rotation is not taken into account by most work on CEE. It is not clear to what degree 
the rotation has accelerated by the time the common envelope phase begins, but MacLeod et al. 
(2018) show that the giant nearly corotates with the binary orbit at the onset of CEE. We use the 
velocity profile of MacLeod et al. (2018) to set an initial condition on the corotation of the giant 
and treat this as a parameter to be tuned in our simulations.  

We have organized this paper as follows. In section 2, we summarize the algorithm of MANGA 
and describe the initial conditions for our simulations. In section 3, we describe the results of our 
simulations of a 2 M red giant and a 1 Mcompanion. We discuss our results and future directions 
in section 4.  



2. Methodology  

2.1. Summary of the MANGA algorithm The ALE algorithm that is implemented in 
MANGA is briefly summarized as follows. We refer the reader to Chang et al. (2017) and PC19 
for detailed discussions. MANGA solves the Euler equations, which written in conservative form 
are  

and  

     (3)  
 
where ρ is the density, v is the fluid velocity, Φ is the gravitational potential,  is the 
specific energy, is the internal energy and  is the pressure. Eq. 1 to 3 can be written in a 
compact form by introducing a state vector U = (ρ,ρv,ρe):  

∂U  

  = S,  (4)  
where F = (ρv,ρvv +P,(ρe+P)v) is the flux function and S = (0,−ρ∇Φ,−ρv ·∇Φ) is the source 
function. To solve Eq. 4, we adopt the same finite volume strategy as Springel (2010). For each 
cell, the integral over the volume of the ith cell Vi defines the charge of the ith cell to be Z  

    
We then use Gauss’ theorem to convert the volume integral over the divergence of the flux in Eq.  
4 to a surface integral  

    
where ∂Vi is the boundary of the cell. We now take advantage of the fact that the volumes are  
Voronoi cells with a finite number of neighbours to define an integrated flux  

 

where Fij and Aij are the average flux and area of the common face between cells i and j. The discrete 
time evolution of the charges in the system is given by  

 

    (1)  

    (2)  



    

where Fˆ ij is an estimate of the half time-step flux between the initial Uni and final states Uni +1 and 
S Ri SdV is the time-averaged integrated source function.  

We estimate the flux Fˆ ij across each face as follows.  

(i) Use the gradient estimates at the initial time-step to predict the half time-step cell-centered 
values.  

(ii) Drift the cells a half time-step and rebuild the Voronoi tessellation at the half time-step.  

(iii) Estimate the half time-step state vector (in the rest frame of the moving face) at the face center 
(r˜ij) between the neighboring i and j cells by linear reconstruction.  

(iv) Estimate the (half time-step) velocity w˜ij of the face, and boost the state vector from the “lab” 
frame (the rest frame of the simulation box) to the rest frame of the face to find the flux along 
the normal of the face. I.e., in the direction from i to j.  

(v) Estimate the flux Fˆ ij across the face using an HLLC or HLL (or HLLD for MHD, Chang, in 
preparation) approximate Riemann solver implemented following Toro (2009).  

(vi) Boost the solved flux back into the “lab” frame.  

We can then use the estimated fluxes to time-evolve the charges Ui following Eq. 8 using the full 
time-step δt and apply changes owing to the source terms.  

2.2. Simulation setup We now outline the development of appropriate initial conditions for 
CEE simulations in MANGA. The reader is referred to PC19 for a detailed discussion. We first 
use MESA to evolve a 2 M star with metallicity Z = 0.02 from the pre-main sequence to the red 
giant phase. We stop when the star reaches 52 R with a helium core mass of 0.36 M. From the 
MESA output, we take the entropy and hydrogen fraction. For the core, we take the total mass at  
a density that is 50 times greater than the mean density of the red giant, giving a core mass  

. This corresponds to a core radius , which we use as the core  
gravitational softening length h. For all particles present regardless of type, MANGA uses spline 
softening to soften the gravitational forces within radius h of the particle. Because of the great 
difference in density between the helium core and the hydrogen envelope, we model the core as a 
dark matter particle with mass Mc and softening radius of Rc. We then take the entropy profile and 
construct a star of mass M − Mc, with an entropy profile which matches that of the original star 
and contains a dark matter particle core. This yields a radial profile of density, temperature and 
hydrogen fraction that can be mapped to a particle (mesh-generating point) profile.  
  
We construct an appropriate particle mesh for the star from a pre-computed glass distribution of 
points embedded in a 3-D cube. We periodically replicate this glass distribution to produce 
sufficient numbers of particles. We assume that each particle is of equal volume and rescale them 



to the appropriate mass based on the computed M(r) from MESA. These particles are also endowed 
with the radially interpolated temperature and hydrogen fraction. The total number of particles 
representing the star is 3×105. Outside of the star, we include a low density atmosphere of 10−13 g 
cm−3 with temperature 105 K that extends out to the total box size of 3.5 × 1014 cm ( ), with 
periodic boundary conditions at its edges. The total number of particles in the simulation box is 
8×105. To lower the computational cost, we use a mesh refinement algorithm to decrease the 
number of gas particles in the atmosphere far from the star. We define a scale factor S(r) = (r/R )n 

where R  is the radius of the star, r is the spherical radius and n is an adjustable parameter which 
we have set to n = 2/3 in this case. Starting with the same uniform glass distribution as for the star, 
the linear spacing between particles is increased by S and their mass is increased by S3, preserving 
the external density.  

We represent the 1 M companion as a dark matter particle in an initially circular Keplerian orbit at 
the red giant radius . Although this neglects the evolution of the binary prior to CEE, we 
compensate by altering the dynamics of the giant. We have implemented the corotation between 
the envelope rotation and orbital motion into our simulations following the scheme of MacLeod et 
al. (2018). Within the envelope, we assume rigid body rotation and initialize the velocity as  
  vφ = fcrΩorbRcyl,  (9)  

but give the atmosphere a velocity  

   (10)  
Rcyl  

Here, fcr is an adjustable parameter, φ is the azimuthal angle, θ is the polar angle, Ωorb is the orbital 
frequency of the red giant and companion, R  is the radius of the giant and Rcyl is the cylindrical 
radius from the rotation axis of the giant. We note that Eq. 9 and 10 ensure that the velocity is 
continuous at the surface of the giant.  

Here, we run two simulations investigating the effect of corotation on the parameters of the final 
binary system, both using the MESA EOS. We initialize the giant in two different states of 
corotation, 95 per cent corotation (fcr = 0.95) and 0 per cent corotation (fcr = 0). We note that the 
95 per cent corotation case follows the simulations of Ohlmann et al. (2016) and Ricker & Taam 
(2012). The choice to set fcr to less than unity is also motivated by MacLeod et al. (2018) who 
found that orbital angular momentum lost by the companion prior to the onset of a common 
envelope phase does not necessarily go into spinning up the envelope, leading to a 
desynchronization between the orbital frequencies of the companion and envelope. We also run 
two simulations the determine the effect of hydrogen recombination energy on CEE. This is 
accomplished by using two different equations of state: the adiabatic EOS and the MESA EOS. 
For the recombination study, both giants are initially non-rotating.  

3. Results  

3.1. Corotation We first discuss the simulations with varying degrees of corotation. Starting 
with the above initial conditions, we simulate the binary for 240 d and show several density 



projections at t = 1, 10, 30, 75, 120 and 240 d for the simulation with 95 per cent corotation in Fig. 
1. In both simulations, the companion experiences an initial plunge into the envelope of the giant 
that lasts about 15 days, throwing off a large tidal tail (Fig. 1 upper center) and greatly decreasing 
the separation between the companion and core. The companions then continue to spiral in as their 
orbital energy is transferred to the gas; the spiral shocks facilitating this transfer can be seen in the 
projections (Fig. 1 upper right). We see smaller tidal tails thrown off at t = 75 d (lower left) and t 
= 120 d (lower center), as well as several others. The simulation ends well before the outflow 
reaches the edge of the simulation box.  

  
Figure 1: Density projections Σ with 95 per cent corotation. The + sign marks the red giant core and the × marks the 
companion.  

The total energy of each gas particle is given by  

   
(Nandez et al. 2015), where mi, vi, vCM, φi and Ie,i are the mass, velocity, center of mass velocity of 
the bound material, gravitational potential and specific internal energy of each particle. Gas 
particles with a negative total energy are bound to the binary, while those with a positive total 
energy are unbound. The kinetic energy is computed relative to the velocity of the center of mass 
(CM) of the bound matter; that is, the bound gas as well as both dark matter particles. However, 
because the total energy is needed in order to determine which gas particles are bound, we use an 
iterative scheme to find the velocity of the CM, described in PC19. With the total energies of all 
particles known, we can find the mass of the unbound gas mg,u as a fraction of the total mass of the 
envelope menv,  



 

which we refer to as the ejection efficiency. This is shown in Fig. 2. Qualitatively, the simulations 
are very similar in this regard. They show a large ejection of gas during the initial plunge as well 
as during the ejection of additional tidal tails. We find that the system set into corotation 
consistently exhibits a higher ejection efficiency, likely owing to the inclusion of additional kinetic 
energy and angular momentum. Matter continues to be ejected up until the end of the simulation 
period, ending with an efficiency of 66 per cent with corotation and 63 per cent for no corotation.  

 
The separations between the stellar core and companion are shown in Fig. 3. For ease of reading, 
we show the separations on a logarithmic scale and smooth them over a period of 15 d. That is, 
each separation ai is taken to be the average of all separations within an interval of 15 d centered 
on ai. After one orbit, both binaries have reduced their orbital separation to less than half the initial 
separation, and they continue to spiral in at a slower rate. Although the simulation with corotation 
initially falls to a smaller separation, it is eventually surpassed by its counterpart. The final 
(smoothed) separations are 3.6 R with corotation and 3.2 R with no corotation.  

 



 

 Because the separation in the adiabatic case is so small, we encountered issues with the 
gravitational softening lengths h. The softening lengths of the core and companion are and 1 R, 
respectively. Thus, if the separation is less than the combined softening length, violations of 
Newton’s third law can occur. That is, the gravitational forces exerted on the dark matter particles 
by one another are not necessarily equal and opposite. To combat this, we have developed a 
method by which h can be changed mid-simulation. At t = 100 d, we change the softening length 
of the core to 1 R for the remainder of the simulation. This results in a change in the core-gas 
gravitational potential energy of 0.11 per cent. We do not believe that this change in h is 
responsible for the surprisingly large ejection efficiency because the change in energy associated 
with modifying h is very small. We also ran the simulation without modification of h and found 
similar behavior.  

3.2. Recombination energy We again simulate the binary for 240 d using the adiabatic EOS 
and the MESA EOS. The ejection efficiency, calculated using Eq. 11 and 12, is shown in Fig. 4 
for both simulations. We see that the ejection efficiency is smoother for the adiabatic case, 
suggesting that the tidal tails are not as efficient at ejecting mass from the binary. We also find the 
surprising result that despite being similar at early times, the adiabatic simulation exhibits a much 
higher final ejection efficiency than the MESA version. The adiabatic and MESA simulations end 
with 92 per cent and 63 per cent of the envelope ejected, respectively. One would expect that the 
additional energy injected into the gas through recombination would help to eject gas from the 
system, but apparently there are other factors at play. One possible explanation is that the stellar 
structure differs significantly between the two equations of state. This change in structure could 
then alter the dynamics of the companion as it spirals in.  

Fig. 5 shows the separations for the recombination energy study. Corresponding to the higher 
ejection efficiency, we see that the adiabatic simulation ends with a smaller final separation, 
meaning that more of the orbital energy has been transferred to the gas. Whereas the MESA 
simulation ends with a separation greater than 3 R, the adiabatic case continues to shrink its orbit 
to .  

 



3.3. Agreement with observation Our results can be linked to observations using surveys of 
binaries containing low-mass white dwarfs. Gianninas et al. (2014) have found systems (such as 
J0755+4800, J1151+5858, and J1518+0658) with primary masses in the range of 0.18 to 0.41 , 
consistent with the mass of our core, with companion masses  and separations of . These 
systems are consistent with our simulations, although the observed systems have ejected their 
envelopes. It is not clear from our simulations whether the envelopes will be completely ejected 
and how the orbital parameters would differ in that case.  

4. Discussion  
In this work, we investigate the physics of CEE using the moving-mesh code MANGA. We 
generate initial conditions for our simulations by using MESA to evolve a pre-main sequence star 
to the red giant phase before placing a companion on its surface in a circular orbit. We run 
simulations of a 2 M giant with a 1 M companion for 240 d.  

Prior to the onset of CEE, the giant is expected to be spun up by tidal forces from the companion, 
and we study this by initializing the giant with rotation in our simulations. In two of our 
simulations, we take the rotation of the envelope to be either 95 or 0 per cent of the (initial) orbital 
frequency. After 240 d, we find that the orbital separation of the red giant core and the companion 
has been reduced to 3.6 R and 3.2 R, respectively. This is a reduction in the separation by a factor 
of 15. Most of the envelope is ejected (66 and 63 per cent, respectively), which is larger than many 
of the results of previous work. However, 3-D numerical computations of CEE have found a wide 
variance in the ejection efficiency of the envelope. Early work (for example, Livio & Soker 1988) 
found envelope ejection efficiencies from about 10 to 80 per cent. However, the resolutions of 
these early simulations were poor. More recent work (Passy et al. 2012; Ricker & Taam 2012; 
Nandez et al. 2015; Ohlmann et al. 2016) also find a large variance in the efficiencies (about 5 to 
100 per cent). We find that the inclusion of corotation results in a larger final separation as well 
as a larger ejection efficiency. This is thought to be due to the inclusion of additional kinetic energy 
and angular momentum in the initial conditions. The differences in the final binary due to 
corotation are significant, particularly with regard to the separation. This suggests that corotation 
cannot be ignored and should be included in future simulations of CEE.  

It has also been suggested that inclusion of recombination energy would result in more efficient 
expulsion of the envelope (see the review by Ivanova 2017). We note that this point is 
controversial, as Soker and collaborators have claimed that the energy from recombination is 
easily transported away either by radiation or convection (Sabach et al. 2017; Soker et al. 2018). 
However, Ivanova (2018) reached the opposite conclusion, that the fraction of recombination 
energy transported away from the regions in which recombination takes place is negligible. We 
include recombination energy in our simulations through the use of the MESA EOS and test it 
against the simpler adiabatic EOS. Nandez et al. (2015) found that between 50 and 100 per cent 
of the envelope mass is ejected in their simulations, depending on the inclusion of recombination 
energy. Although our ejection efficiencies are similarly high, we find the opposite result that the 
adiabatic EOS gives a larger efficiency and a correspondingly smaller separation. This unexpected 
result is likely due to the fact that changing the EOS not only changes the treatment of 
recombination, but also changes the structure of the star. This change in structure could then alter 
the dynamics of the companion as it spirals in. However, it is also possible that radiative cooling 
could be important in CEE, particularly with regard to the energy injected during recombination. 



Radiation physics is currently being implemented into MANGA (Chang, Davis & Jiang, in 
preparation), and when this is complete we will incorporate it into our CEE simulations.  

We note here that other processes may also aid the expulsion of the envelope. Much recent work 
have been focused on energy and momentum injection from jets produced by accretion onto the 
companion (for example, Lopez-C´ amara´ et al. 2018). In addition, the transition from laminar 
flow to accretion flows around the companion star can be complicated and also provide another 
mechanism by which orbital energy is dissipated (MacLeod et al. 2017). Much of the work have 
focused on Bondi-Littleton-Hoyle type accretion around a point mass. However, a typical accretor 
has a physical scale of a solar radius, which gives it a nontrivial cross section in a red giant 
envelope. Typically, we can show that a 1 R accretor encounters 10 to 50 per cent of the envelope 
in one orbit. This hydrodynamic interaction may play a significant role in the evolution of the 
common envelope and the binary orbit.  

To date, all simulations of CEE – including those presented here – have assumed that the size of 
the companion object is negligibly small compared to the red giant envelope, and have modeled 
the companion as a point particle. This assumption is appropriate if the companion is a black hole 
or neutron star, but is not generally valid. The implementation of moving boundary conditions into 
MANGA (Prust, in preparation) will allow us to model the companion as a spherical boundary of 
arbitrary size. This will more accurately model the shock waves created by the motion of the 
companion through the envelope, and can also be used to implement a model for accretion onto 
the companion. Preliminary simulations of CEE using this methodology are encouraging, but have 
only been tested with low resolution at the time of writing. High-resolution simulations of CEE 
using the MESA EOS could shed light on the effects of companion size and inform future work. 
In particular, the drag force on the companion is expected to depend upon the size of the 
companion, and could alter the dynamics of the spiral-in phase (Chamandy et al. 2019).  
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