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Abstract 

Plants grown in orbit seem to experience oxidative stress. The gene expression response 

of the plants to this oxidative stress bears striking resemblance to their response towards 

dilute hydrogen peroxide (H2O2). Thus, one route towards developing plants better suited 

to the stresses of spaceflight begins with developing a way to reliably and consistently 

treat plants with hydrogen peroxide in a laboratory setting. The ROSwell Device 

embraces this challenge, using 3D-printed components, Arduino and Raspberry Pi 

microcontroller units, and a solenoid valve mounted on a frame of 80/20 aluminum. The 

final goal for this device is to construct a reliable method for testing and development of 

plants designed to grow in space, before sending them into orbit. 

 

 

1. Background 

Throughout experiments conducted by the Gilroy Lab, Arabidopsis thaliana plants grown 

onboard the ISS have been shown to experience a novel form of oxidative stress. Through 

genome ontology enrichment analysis, Dr. Simon Gilroy and Dr. Richard Barker were able to 

show that this oxidative stress, characterized by an increased production of Reactive Oxygen 

Species (ROS), generates a very similar genetic response in Arabidopsis as treating the plants 

with doses of hydrogen peroxide diluted to a concentration of approximately 1 milliMolar. The 

majority of this data, which focused on 11 core spaceflight response genes, was gathered through 

the TOAST experiments conducted by the Gilroy Lab (Data is available as GLDS37 at the 

NASA GeneLab data repository).  

 

Figure 1: A Venn diagram of all four genotypes, identifying the 11 core spaceflight genes that 

respond in all variants. Although Cvi-0 has a far larger response than Ler-0, the same 11 genes 

respond in both when subjected to spaceflight. 



 

2. Methods 

In order to create a device that can properly deliver doses of dilute hydrogen peroxide without 

drowning the Arabidopsis plants and to develop such equipment on a relatively small budget 

with the goal of making it readily available to the larger scientific community, much of the 

design of the device was built with open-source materials. Thus, units such as Arduino boards 

and Raspberry Pi microcontrollers were chosen as well as more accessible fabrication methods 

such as 3D printing. 

2.1 Frame and mount In order to both protect the device and ensure that it could be 

mounted at the required angle to facilitate liquid flow, a frame was constructed out of 25mm 

thick 80/20 aluminum. Inside of this frame, the device itself was mounted in a 24 x 11.5 x 0.5 

inch piece of acrylic. Using the Universal Laser Systems laser cutter (Figure 2.A), holes were 

made for both the Petri dish module that would eventually house the plants and the controller 

screen using the cutter’s controller/design software (Figure 2.B). Cuts required 8-10 passes of the 

laser at maximum power and 1% speed. (Figure 2.B)   

A) B)  

Figure 2 

A) The laser cutter. B) Interface for the laser cutter’s settings and controls. 

 

2.2 Tubing and control units Although the plant module itself will be discussed in 

greater detail in the next section, it has serrated hose nozzles on each end which the tubing and 

valve connect to. These serrated hose nozzles act as both the inlet and the outlet for the fluid.  

The inlet hose has a ⅜ inch inner diameter and the outlet hose has a ½ inch inner diameter. Both 

hoses are polymer Tygon tubing which can be easily autoclaved for sterilization. The inlet hose 

attaches to a solenoid valve, located above the plant module. The storage tank for the hydrogen 

peroxide is in turn located above the solenoid valve. As a result, once the valve is opened the 

entire system, pictured in Figure 3.A., can be run without a pump, merely using gravity to deliver 

the hydrogen peroxide. Thus, the primary power draws for the device as a whole are the growth 

LEDs, the screen, and the control units. Due to the difference in voltage requirements between 



the control units and the solenoid valve, the system demands a power switch, pictured below in 

Figure 3.B. With the exception of the LEDs and the solenoid valve, all electronics are mounted 

underneath the acrylic sheet.   

 

Figure 3 

A)  The fluid pathway, located on top of the device. B) The switch needed for the Arduino to 

send commands to the solenoid valve. C) The system when viewed from the back, showing the 

wiring connecting all the electronics together. D) The backside of the plant module. The 

Raspberry Pi is stored on top of it, with the petri dish located on the other side of the acrylic. 

 

2.3 Petri Dish Module The full device within which the Arabidopsis samples are treated 

and monitored consists of two basic components: The FlashLapse Module and the ROSwell 

Module. Both were designed in SolidWorks and fabricated using 3D printers.  

 

2.3.1 FlashLapse module. The FlashLapse module consists of three 3D printed 

components, each of which are made in a Makerbot Replicator PLA (Polylactic Acid) extrusion 

printer. The top component is a simple cap which fits atop the ROSwell module to conceal the 

plants from outside light. The bottom component serves as a shield from outside light for the 

plants, a mount for a Raspberry Pi camera, a mount for programmable LED lights, and as a 



mount for the side component. This side component houses the Raspberry Pi controller unit 

which, when paired with an Arduino, controls both the lighting system and the camera. Thus, 

what light the plants receive is entirely under the control of the user during experiments. The 

Raspberry Pi camera can be used to conduct time-lapse photography of the Arabidopsis. When 

botanists analyze these images with measurement software, growth of the test subjects can be 

tracked over time. 

  

Figure 4 

The FlashLapse bottom component. The Raspberry Pi camera is mounted on the square edges in 

the center, with the housing for the Pi itself sliding into the circular groove on the far side. The 

design was altered slightly for the ROSwell Device such that the pieces fit together with the 

acrylic sheet in the middle. 

 

2.3.2 ROSwell module. The ROSwell module serves as a mount for the petri dish tray and 

lid, as a connection between the FlashLapse base and lid, and as both an inlet and outlet for the 

hydrogen peroxide. The petri dish will contain the plant samples, which will be rooted in an agar 

growth media. The FlashLapse unit was designed as part of a separate project and then adapted 

to fit this project.  



A)  

 

Figure 5 

A) The fully assembled CAD file of the ROSwell module. B) Attempts at printing the ROSwell 

module with an extrusion printer compared to a stereolithography printer. The hose nozzles on 

the extruded parts not only collapsed but also had supports blocking the channel. C) The fluid 

channels cut through the middle of the frame which holds the petri dish. On the top and bottom 

are edges within which the petri dish lid and tray fit, respectively. 

 

While the module is an assembly of many parts in the SolidWorks design, it is actually 

fabricated as a single unit. Initial attempts were made to construct the device using a simple PLA 

extrusion printer; however, the dimensions of the fluid channels required a more exact means of 

production. Thus, the final version was built using a FormLabs Form2 Stereolithography (SLA) 

printer, which required no supports inside of the fluid channels during printing. Both ends of the 

ROSwell module have serrated hose nozzles for attaching tubing. From there, both the inlet and 

outlet channels cut through the middle of the device, as can be seen in Figure 5.C. These 

channels gradually loft into a rectangular exit, turning a quarter revolution such that they face the 

agar when the fluid exits them. In order for the treatment of the plants to be consistent across the 

petri dish, there must be enough pressure on the fluid as it enters the chamber such that a uniform 



sheet is created. In order to generate this small but necessary pressure, there must be a slight drop 

in area between the circular entrance of the fluid inlet and its rectangular exit. To keep the fluid 

sheet in contact with the agar, a small protrusion was added which digs down into its surface. 

The combined lofted inlet and agar edge can be seen below in Figure 6.A. Due to the width of a 

petri dish, and the diameter of the tubing, the exit of the fluid inlet is restricted to just 0.5mm 

wide. The precision needed for this dimension restriction requires an SLA printer, rather than a 

simple extrusion printer.   

A)    

 

B)  

Figure 6 

A) The CAD file for the fluid inlet. Although the dimensions are slightly greater, the outlet has 

the same basic design as well. The image on the left shows that the inside is indeed hollow, 

containing the fluid channel. B) From left: FormLabs Form 2 SLA Printer, MakerBot Replicator. 

 

 



2.4 Display screen and graphical user interface   

In order to make the ROSwell device more user-friendly, a small screen was added next to the 

device, with a graphical user interface (GUI), borrowed from the ongoing FlashLapse project. 

Following a similar protocol as the petri dish module, a cut was made in the acrylic using the 

same laser cutter, before placing the device inside this cut and securing it to the surrounding 

edges, mostly using hot glue. 

A) B)  

Figure 7 

A) The graphical user interface. B) Using the GUI with a remote control, lights can be adjusted. 

In this image, the lights are set to green and the petri dish module’s cap has been removed. The 

lights can also be set to red, blue, white, and infrared. The Raspberry Pi camera has an infrared 

lens as well. 

 

3. Functionality 

Mechanically, the design functions as planned. All components function to expectations. With 

programming, the lights can be set to a frequency of the user’s choosing more specifically than 

through the GUI, and images can be easily recorded. As the solenoid valve is controlled by the 

Arduino, it too is programmable. Thus, the entire fluid pathway of the system functions as 

intended. The hydrogen peroxide is dispersed evenly across the agar of the petri dish such that a 

thin sheet of fluid is formed, contacting all plants evenly. The fluid then exits through the outlet 

channel, ensuring that the plants are not drowned. All components that are along the fluid 

pathway can be sterilized without causing damage. As previously mentioned, the tubing is 

simply put into an autoclave. However, the 3D printed parts cannot survive this, and long-term 

exposure to ethanol proved to be somewhat corrosive for parts from the SLA printer. In testing, 

bleach left crystals large enough to block the fluid channels once it dried. However, exposure 

tests conducted over the course of several weeks showed that chlorine gas seemed to have no 

adverse effects on the material, and thus will be used as the primary sterilization method before 

experiments. The parts also showed no negative responses to the 1mM hydrogen peroxide they 

will be exposed to during testing. 



 

Figure 8 

Exposure tests of the SLA printer’s resin to various methods of sterilization and chemicals it will 

be exposed to in experiments. From left to right (labelled): water (control), ethanol at 70% 

concentration, liquid bleach at 50% concentration, hydrogen peroxide at a concentration of 1mM 

(what the plants will be treated with), and an exposure to chlorine gas in the glass container. 

 

Unfortunately, it has proven difficult to keep the plants from washing away with the fluid during 

testing. With Arabidopsis samples that have grown more than several weeks, the roots are strong 

enough that this is never a problem. However, the ultimate goal is to perform testing on a sample 

that is younger, and so this issue cannot be ignored. Mounting the device at an angle instead of 

vertically has somewhat fixed the problem, though not entirely. The only other noticeable 

problem for the system currently is the cost of printing the ROSwell module. Each part costs 

roughly $30, and SLA printers are not as common as extrusion printers outside of well-funded 

laboratories, cutting down on the open-source ability of this device. Thus, some time will likely 

be dedicated to trying to design a module that can be made through extrusion in the near future. 

Given the dimensional constraints of the fluid inlet, whether or not this will be successful 

remains to be seen. 

 

4. Future goals for project 

While the next prototype is already being designed to exert less force on the plants, the most 

immediate goal for the project going forward is to begin running multi-day and perhaps multi-

week experiments. Slowing this process is the learning of Arduino programming that is currently 

taking place. With this knowledge, image capture and valve function can occur in unison, 

allowing the device to function without constant user input. After an initial round of tests are 



completed, the next task is to scale up the design, from a single plant module to twelve. 

Development for this larger unit is already well underway, and construction of its considerably 

larger frame will begin in a few weeks. Assuming that meaningful data can indeed be gained 

from this device, the end goal is to use it on NASA target crops, such that a better model of the 

stresses of spaceflight can be applied to plants here on Earth other than Arabidopsis. 
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6. Materials/Resources Required for Project 

● Makerbot Replicator PLA/ABS extrusion 3D Printer 

● PLA filament, any color other than transparent (1kg) 

● FormLabs Form2 SLA 3D Printer 

● FormLabs Standard Resin, black or grey (1L) 

● Tygon ½” ID Polymer Tubing (3ft) 

● Tygon ⅜” ID Polymer Tubing (3ft) 

● Universal Laser Systems Laser Engraver/Cutter 

● Raspberry Pi 3 

● Arduino Uno (2) 

● Adafruit Neopixel Programmable LED Strip (3ft+) 



● Solenoid Valve 

● Serrated hose nozzle adapter for ¼” pipe to ⅜” tubing (2) 

● 4.5 x 7 inch Screen 

● Computer with SolidWorks, Makerbot, PreForm software downloaded 

● 25 x 25 mm 80/20 aluminum (15ft) 

● Circular saw for cutting 80/20 aluminum 

● Belt sander or Deburring tool for smoothing cuts on 80/20 aluminum 

● 80/20 Corner Brackets, Bolts, Washers 

● Adafruit Industries Jumper Wire 

● Electronic/Salon 24/20-pin ATX DC Power Supply Breakout Board 

● Power Source 

● PowerSwitch Tail II 

● Rinse bath for SLA prints 

● 24 x 11.5 x 0.5 inch Acrylic Sheet 

 

 


