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Abstract 
During the 2016-2017 Collegiate Rocket Launch (CRL) competition, teams were required 
to design and construct a high-power rocket that would complete a safe flight that would 
reach as close as possible to a target apogee height of 3,000 feet, as well as generate an 
electric current during the pre-apogee portion of the rocket’s flight. The UW-Fox Valley 
team, the Rocketeers, designed a three-inch diameter, thin-walled fiberglass airframe at a 
final length of 188cm that was able to achieve safe flights. In order to generate electricity 
during the flight, the team used a ducting system that allowed air through an inner turbine 
system. On competition day, three safe flights were completed, with altitude, velocity, and 
acceleration data recorded. Electric generation data was recorded during the first flight, but 
due to environmental factors data was not recorded for voltage generation on the second 
and third flight.   

 
1. Introduction 

The Wisconsin Space Grant Consortium (WSGC) CRL competition challenged participating 
college students to achieve two main goals: reach as close as possible to a target apogee height 
with a high-powered rocket, as well as generate an electric current during the pre-apogee portion 
of the rocket's flight. Reaching a specified target apogee would require the consideration of many 
design components, including the motor chosen in conjunction with the final weight of the rocket, 
and the rocket’s drag. When considering which electric generation method to use, reliability of the 
system needed to be considered, as well as the location of the system and how it might affect the 
stability of the rocket. In addition to the design goals, WSGC encouraged teams to participate in 
educational outreach, as well as develop their project management skills with various deliverables 
that were also scored for the competition.  
 
   

2. Design and Construction 
 

Approach. Early in the planning stages, it was decided to make the design for the electronic 
systems modular. Creating a modular electronics system meant that it could be designed 
independent of the rocket airframe, provided the outer diameter of the designed system didn’t 
exceed the inner diameter of the rocket frame.  

 
Having decided this, the team then moved on to basic airframe design considerations, and electric 
generation methods. In order to decide which generation method should be used, the team 
brainstormed various ideas and created a decision matrix. When deciding what materials should 
be used for the airframe and general electronics components, various options were researched, and 



the team discussed which option would work best for the rocket. After design and construction 
were completed, multiple test flights were planned to be completed in order to confirm that the 
rocket would meet the requirements of the competition. 
 

Airframe. The rocket was designed in three main sections, as shown in Figure 1. The top 
section was the nose cone section, the middle section the electronics bay, and the bottom section 
was the tailfin section. The nose cone section housed the GPS tracker, as well as the main parachute 
and the main parachute deployment charge. The middle section housed the altimeter bay, as well 
as the electronic generation bay. The altimeter bay contained the two altimeters used for the 
competition, as well as a 7.4-volt LiPo battery and a 9-volt battery used to power the altimeters. 
The electric generation bay housed the electric generation system, as well as the data recording 
system. The tailfin section contained the drogue parachute, as well as a deployment charge. 

Initial design of the airframe started with which material to use for the rocket build. The 
two primary materials available for high-powered rocket frames were cardboard tube or composite. 
Consideration was given to strength, unpredictable conditions at the launch site, ease of 
construction, cost, and adaptability to a fluid design process. The decision was made to start with 
a DX3 kit from Madcow Rocketry. The kit provided all the major construction materials required 
for the design. The tubes were three-inch diameter, filament wound, vinyl ester tubing with 

Figure	1:	Diagram	of	components	in	rocket	frame	



appropriately sized connection tubing and bulkheads. Additional tubing to extend the fuselage and 
construct the avionics bay was also acquired. A G-10 sheet for the fins and additional bulkheads 
from Wildman Rocketry where obtained as well. 

 
Once the G-10 sheet components were designed, they were cut using an X-Carve CNC router. 
Hand cleanup and shaping was accomplished with sandpaper. Slots for the fins were cut using a 
Dremel tool with an abrasive disc. The 38-mm motor retainer was obtained from Aero Pack and 
bonded to the fiberglass motor tube with epoxy paste. Epoxy paste was also used to attach the fins, 
with smooth fillets between the fin and rocket for reduced drag. To join the upper body tube to the 
nose cone, rivets were used. Shear pins were used on either side of the electronics bay to create 
separation joints for chute deployment. Finally, holes were cut into the rocket to allow for ducting, 
which was divided into two identical sections 180 degrees from each other to cancel the effect on 
the flight path. 
 
 Recovery system. The altimeter used in the rocket was a RRC3 altimeter from Missile 
Works, located in the electronics section of the rocket. The altimeter recorded the altitude of the 
rocket, and was additionally programmed to set off deployment charges to eject the parachutes 
from the rocket. The team decided to use a RRC3 altimeter because it met requirements set by the 
competition, as well as fitting within budgetary constraints. Along with this altimeter, the altimeter 
provided by WSGC, a Raven III Featherweight Altimeter, was also placed in the electronics 
section of the rocket. 
 
The rocket was designed with a dual deployment parachute system. Nomex parachute protectors 
and parachutes where obtained from Wildman. A 24-inch drogue parachute was designed to 
deploy at apogee, with two grams of 4F black powder set up as the charge for deployment. The 
main parachute was 60 inches, and was set by the RRC3 to deploy with a 1.5 gram charge at an 
altitude of 500 feet. These sizes were chosen based on an estimated maximum flight weight of 10 
pounds at. To tether the parachute to the rocket, 3/8-inch Kevlar tubing was used, attaching the 
nose cone, avionics bay, and motor housing using swivel connectors and screw links for reliability. 
 
 

Electrical generation design process. Generation of electrical power during the ascent of 
the flight was one of the main requirements of the competition. This became a major design 
consideration because of its impact on the airframe structure and the avionics required to 
implement it.	The brainstorming session determined a number of possible methods to obtain this 
goal. Peltier tiles, a Stirling engine, piezoelectric crystals, and a turbine driven by airflow during 
flight were the main methods explored.  After much deliberation and the use of a decision matrix 
to facilitate the decision process, a turbine driven generator was chosen as the method that would 
be pursued. 
 
Once the decision was made to go with a turbine design, the focus shifted to methods of 
accomplishing this while affecting the flight dynamics of the vehicle as minimally as possible. It 
became apparent that housing the turbine and the associated duct work internally offered the least 
impact to the stability of the rocket in flight and also provided a challenge to the group in the 
design, implementation and testing of the system. Centering the ductwork as much as possible to 



the center of pressure (CP) of the rocket was crucial to the airflow through the turbine system not 
having an adverse effect on the flight path of the rocket. 
 
A NACA duct was used to provide inlet airflow to the ductwork while decreasing the amount of 
drag as the air entered the rocket. The ducting then directed the air through the turbine, which was 
a repurposed 12-volt cooling fan. From there, the ducting directed the airflow out of the side of 
the rocket through a basic round hole.  
 

Avionics and electrical generation hardware construction. The entire avionics bay sled 
and nose GPS mount were designed and constructed in house using primarily 3D printed 
components made with polylactic acid (PLA) filament. All wiring, switches and battery 
connections were soldered for reliability and are incorporated in the avionics bay design. 
 
An Arduino unit was selected to monitor and record the electrical generation. Cost, relative ease 
to program and troubleshoot, along with its modest power requirements all entered into the 
decision process. An expansion SD card recorder was used to provide in flight storage of the 
turbine output voltages and current levels. A custom circuit board was designed and fabricated to 
support the acquisition of power generation data from the turbine. This housed the rectifier, voltage 
divider and noise suppression capacitors. 
 
The electronics system was designed and modeled in PTC Creo. Initially, the system attempted to 
use flexible ducting that would interlock with the body tube. However, the PLA wasn’t flexible 
enough, and the design for this system had to undergo iterations. In the final design, the ducting 
was separate pieces that were bolted to the frame. The ducting section was split into two separate 
sections after multiple iterations. The top ducting section was designed with a relief for the turbine 
to be placed in. The bottom ducting section houses the Arduino, with a strap to hold the Arduino’s 
battery. This was all held together by the pressure applied by mounting nuts on both sides of a pair 
of 2-foot avionic bay rods that run the length of the electronics section. The final print of the 
housing was modified to have a 20% interior infill to reduce weight, as well as the cost of the 
material. 
 

3. Testing 
Predicted Performance.  In order to predict the initial performance of the rocket, it was 

modeled in OpenRocket. From the original simulation, data obtained from test flights was used to 
make more accurate predictions. Simulation parameters, to match actual flight conditions during 
testing, included: 5 mph winds, 10% wind turbulence, 55° Fahrenheit, 1013 mbar atmospheric 
pressure, a 2-meter launch rod, 800-foot launch altitude, and GPS coordinates of 42.6 N, -88.2 E 
for the launch site. This gave the predicted results seen in Figure 2. The final simulation before the 
competition showed an expected apogee of 3,073 feet. 

 
Additionally, a predicted voltage as a function of time was found. It was predicted that voltage 
peak would be reached early in the rocket’s flight, remaining at this peak voltage for the remainder 
of the pre-apogee portion of flight, returning to a zero voltage gradually as the rocket slowly 
decelerated. The predicted voltage function is shown in Figure 3, with the flight reaching a peak 
voltage of 4.5 volts at about 0.275 seconds, and decreasing gradually until twelve seconds into the 
flight, where it decelerates more quickly.  



	

Figure	2:	Flight	altitude	shown	as	a	function	of	time	

	

	

Test Flights. Test flights were conducted in order to compare how the rocket performance 
compared to the simulation performance. During the first test flight, the rocket reached an apogee 
of 3,384 feet and voltage data was recorded. However, the data received from the Arduino showed 
voltage reading with no trend lines. Due to this inconsistency, the Arduino code was modified to 
retrieve the time data, as well as sample at a higher frequency. In addition to failing to properly 
retrieve voltage data, the rocket also failed to complete a safe flight at the first test launch. Initially, 
the shock cord was partially wrapped around the bottom of the rocket with no method of retaining 
the cord. During the flight, the cord slipped into the motor exhaust, separating the cord between 
the tailfin section and the rest of the rocket. This caused the tailfin section to descend back to the 

Figure	2:	Graph	of	predicted	voltage	as	a	function	of	time	
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ground in free fall at ejection of the drogue parachute. Despite this failure, the tailfin section was 
recovered with minimal damage. After the first test flight, the Kevlar was retained within the rocket 
to prevent this problem. 
 
On the second day of test flights, the rocket was launched twice. The Arduino code corrected the 
original problems seen in the first test, however the code stopped recording data points before the 
Arduino was turned off. On the first flight, 12.4 ounces of removable weight was added, along 
with the weight due to the paint on the rocket. The apogee height of this flight was 2,780 feet. In 
order to see how much of an impact the paint had made on the difference in apogee, the 12.4 ounce 
weights were removed. The apogee height of the second flight was 3,112 feet 
 

4. Results  
On the day of the competition, the Rocketeers were the first team to fly their rocket, sending it on 
its first flight within the first hour. On the first flight, voltage was generated and recorded, but the 
altitude was above the target altitude. In order to lower the altitude, weight was added to the rocket 
and it was launched a second time. On the second flight, the rocket landed in water and no data 

was recovered from the Arduino. However, the altimeters still worked, and it was shown that the 
rocket's apogee height was still too high. On the third and final launch of the day, more weight was 
added to the rocket. However, the altitude on the final launch was much lower than was calculated 
by the team. The flight data is shown in Figure 4. It can be seen that the flight data matched the 
prediction quite well, within 94 percent in the best case. 
 

Figure	4:	Graph	of	altitude	versus	time	for	each	of	the	competition	flights	



Reaching target apogee. To try to reach the competition target apogee of 3000 feet, the 
team modeled their rocket in OpenRocket, which output a precise weight of the rocket to hit this 
goal. According to the simulation, the team needed to add 4.4 ounces to reach an apogee height of 
3,005 feet. For the first launch, the 4.4 ounces were added, and the apogee of the flight was 
recorded to be 3,168 feet. Due to this considerable difference in predicted height, the team decided 
for the second flight to add an additional 2.4 ounces to the rocket. During the second flight, the 
rocket reached apogee at 3,143 feet. The team had been expecting the height to go down by a 
greater amount, so the difference in height of only 25 feet was not as close to the target as the team 
was comfortable with. The Rocketeers decided to launch one more time, using a linear relationship 
to predict that a total weight of 12.7 ounces added to the rocket would bring the height down to a 
value closer to 3000 feet. However, the apogee height of the final launch was 2,534 feet. The 
altitude of each flight, along with its velocity and acceleration, can be found in Table 1. 
 

Voltage Generation. As stated earlier, an inner turbine system was used for electric power 
generation. Before this system was ever launched while inside a rocket, it was tested at a lower 
wind speed to ensure the fan would operate in a way that wouldn’t destabilize the rocket's flight. 
Seeing that the fan withstood lower speeds, the electric generation system was put in a rocket for 
a test flight before competition. Early test flights were successful, and the electric generation 
system underwent a few minor changes before the competition flight.  

 
At the competition, voltage was recorded during the first flight of the day. The data points read by 
the Arduino resulted in a curve that increased from the rocket's launch to its apogee height. While 
the Arduino recorded a voltage of 4.5V, the true voltage peak was at 11.63V. Since the Arduino 
had a maximum voltage read of five volts, this higher voltage needed be stepped down in order to 
be recorded by the Arduino. Once getting the raw data, it was then possible to convert the data to 
the correct voltages. After the rocket landed from its second flight, it landed in standing water, 
which entered the electronics bay. While the altimeters continued to work after this flight, the 
Arduino was unable to retrieve data for the second flight, as well as record or retrieve data from 
the final flight. The voltage recorded is shown in Figure 5. 

Table	1:	The	altitude	in	feet	and	meters,	acceleration,	and	velocity	for	each	of	the	flights	



5. Discussion  
Altitude inconsistency. During the last flight of the competition, the team saw a discrepancy 

between what they were expecting from the weight added in comparison to the apogee height. 
When the team was predicting what the change in weight would result in for a change of apogee, 
linear interpolation was used. It is possible there are other factors that the team didn’t consider 
during the competition that would have a greater impact than the weight of the rocket on the 
apogee. Additional test flights may have helped in determining what various contributing factors 
may have been. One possibility discussed was an anomaly with the rocket motor. In the third flight, 
there is a spike in acceleration just after the .06 second mark, followed by a sharper decrease in 
the average thrust after that point, as compared with the previous two flights, shown more closely 
in Figure 6. There is another anomaly near the 0.8 second mark. These differences lead the team 
to believe the motor to be one of the contributing factors in the significantly decreased apogee. 

	
Figure	6:	Detail	of	velocity	comparison	of	simulation	and	flights 

Figure	5:	Graph	of	voltage	and	altitude	versus	time	predicted	and	for	the	first	flight	



Obstacles. As this was the first year that a team from University of Wisconsin-Fox Valley 
competed, many obstacles had to be overcome. The group discovered the lack of tools and 
equipment to be a setback during the construction phase of the project. While some funds where 
available to purchase what was needed, some members brought tools from home and many of the 
more expensive items were borrowed.  
 
Successfully managing a large, multiple-participant project such as this is an area that could be 
improved on for next competition. Managing workflow, material acquisition and build sessions 
while keeping the schedule of not only the competition but of the students in mind was difficult. 
A more proactive approach in regards to the early design and testing phase will be enacted and 
will result in a less hurried build and increase the time available to attempt more test flights. A 
greater emphasis will be placed on pre-competition test flights as the team believed the flights they 
had done were one of the main reasons the team enjoyed success on competition day. 
 

6. Summary and Conclusions 
Rocket flight assessment. Overall, the rocket performed as expected. Multiple test flights 

allowed to team to modify both the airframe, and data recording systems in time for the 
competition flight. The rocket successfully launched three times at competition, with successful 
parachute deployments ending in three safe flights with the rocket recovered in flyable condition. 
All systems worked as expected in the rocket, including altimeters, GPS tracker, and the electric 
generation system. Voltage generation was recorded from the turbine system on the first flight in 
the pre-apogee portion of flight. Additionally, during the three flights, an apogee height of 3,143 
feet was recorded as the closest apogee height to the target.  
 
With the overall success, there are still various improvements that could be made for the following 
year. One of the complications faced was the failure of the Arduino upon the water landing. For 
next year, attempting to water-proof the Arduino or having back-up Arduinos with uploaded code 
is suggested.  
 
Moving forward, next year the Rocketeers will focus on improved documentation throughout the 
competition, as well as completing as many test flights as possible. Since the apogee height was 
the part of the competition the team struggled with most, more data points will give the team a 
better understanding of how the weight of the rocket and possible other factors contribute to the 
height the rocket reaches.  
 

Team assessment. The CRL competition was a great opportunity for the students involved 
to use the skills they had been learning in their classes in a practical application that continuously 
kept everyone engaged. From the early stages of the competition, the team had to think critically 
when they were brainstorming and deciding how they would proceed with the design of the rocket. 
Once they had made the decision to use an inner turbine system, they then decided to make the 
electrical components modular, in order to allow for an iterative design process for this system in 
concurrence with the build of the rocket airframe. Additionally, while the design process and 
construction were going on, the team had multiple papers and deadlines to keep track of as well. 
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