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Abstract 

 

Rankine cycles will someday be the power plants of choice for manned space missions, 

providing excellent thermodynamic efficiency and high power density. The Rankine cycle’s 

hallmark is a working fluid that changes phase between liquid and vapor. However, the working 

fluid must remain in the vapor phase as it passes through the turbine to avoid damaging this 

component. The need to tightly regulate the working fluid phase through the turbine imposes 

limits on the power produced and the overall efficiency of the cycle, especially given limitations 

on power plant volume and mass necessarily imposed by housing it in an interplanetary 

spacecraft. 

 

These limitations could be relaxed if a turbine were incorporated into the Rankine power cycle 

that was robust and fully operational while processing two-phase flows. Disk turbines have the 

potential for continuous operation regardless of the thermodynamic quality of working fluid 

running through them. However, due to high rotational velocity and low torque output by disk 

turbines, their performance is difficult to evaluate using conventional techniques for aero-derived 

turbines. 

 

To assess disk turbines as candidates for space-based power generation, we describe a method to 

accurately measure and predict turbine mechanical power output using the rational inertia of the 

turbine’s spinning components and friction in its bearings as the load. The turbine’s time 

response to Dirac load inputs, as well as its no-load responses to compressed air input over a 

range of pressures, are measured. This technique, called dynamic dynamometry, produces 

turbine power-versus-angular-velocity curves, useful for quantitative performance analysis. 

 

Introduction 

 

Working microgravity Rankine cycle technology is identified by NASA as an essential element 

for future manned space missions to provide high-power density and superior thermodynamic 

efficiency
i
 compared to existing space-based energy generation methods.

ii
 Given the extensive 

experience NASA has developed to handle fluids, especially low-temperature fluids, in 

microgravity, a space-based Rankine cycle could be implemented today using existing 

technology.
iii

 The hallmark of the Rankine cycle is a working fluid that changes phase between 

liquid and vapor. However, the working fluid must remain in the vapor phase as it passes through 
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the turbine to avoid damage. This necessity imposes limits on the power produced and the 

overall efficiency of the cycle. 

 

Better performance could be obtained if a non-conventional turbine were incorporated into the 

Rankine power cycle that operated reliably and robustly while processing two-phase flows. Disk 

turbines have the potential for continuous operation without damage when functioning with a 

working fluid of fractional thermodynamic quality.
iv

 Disk turbines (also called boundary layer 

turbines or Tesla turbines) differ from conventional aero-derived turbines. Instead of gas 

impinging on aerodynamic blade surfaces to produce lift and spin the shaft, disk turbines rely on 

viscous shear between the working fluid and flat disks to provide motive torque. As a result, disk 

turbines typically operate at much higher rotational rates with lower torque than their aero-

derived counterparts,
v
 which makes their performance difficult to evaluate using conventional 

techniques for aero-derived turbines.
 vi

 

 

Experimental evaluation of engines and turbo-machinery typically requires a dynamometer to 

measure power curves – power output as a function of rotational rate for a series of loads. Due to 

the high-rotation-rate and low torque output by disk turbines, no commercially-available 

dynamometers are suitable. Instead, we use a technique called dynamic dynamometry, which 

uses the rotational inertia of the turbine spindle and the friction in the bearings as the load. No 

separate dynamometer is needed to extract power curves. This technique has already been used 

successfully by researchers to characterize tiny disk turbines,
vii

 and its application as a classroom 

demonstration to teach mechanical engineering concepts has also been described.
viii

 

 

This paper explains how the dynamic dynamometry technique can be applied to measure the 

rotational inertia and extract power curves for a disk turbine. This technique provides the 

foundation for future characterization and analysis of disk turbines for space-based power 

generation. 

 

Theory and Experiments 

 

All described experiments were carried out using a 

small pre-built disk turbine made available by an 

industry partner (Figure 1). The complete apparatus 

consisted of an optical tachometer located to enable 

continuous measurement of the turbine shaft rotation 

rate and a video recording device (an iPhone). The 

video-recorded tachometer readout provided time 

histories of the turbine shaft angular velocity during 

experimental events, which was the fundamental data 

stream analyzed to extract turbine performance metrics. 

 

To reduce data to useful form, free frame-by-frame 

video viewing software was utilized (VLC Media 

Player
ix

). The approximate data sampling rate was 

determined by placing a stopwatch in the video 

recorder’s field of view and counting the number of frames shot over some characteristic 

 
Figure 1: Optical tachometer and stopwatch 

positioned in the same video shot to enable 

video capture of turbine spindle experimental 

rotational velocity time histories for data 

analysis. 



 

duration. Each frame therefore showed the tachometer reading at a sampling interval equal to the 

frame rate of the video capture device used. An example of the entire set-up is shown in Figure 

1. 

 

Turbine Rotational Inertia Determination 

 

The turbine was anchored about 2.5 meters above ground. 

One end of a long sewing thread was secured to the turbine 

spindle, and the other end was attached to a free weight of 

known mass resting at the elevation of the turbine. The thread 

was wrapped around the turbine shaft without doubling up on 

itself. With video capture of tachometer data enabled, the 

weight was knocked to the floor, spinning the turbine shaft 

with an instantaneous input of force provided by gravity 

acting on the weight’s mass. 

 

In general, turbine spindle angular acceleration under inlet 

gas pressure,  ̈ ( ), under a falling mass,  ̈ ( )  or 

deceleration due to bearing friction,  ̈ ( ), are approximated 

via the time derivative of collected experimental angular 

turbine data, 

 

 ̈( )  
  ̇( )

  
                             (Eq. 1) 

 

where  ̇( ) is the spindle angular velocity, and t is a time interval of measurement. Applying 

Newton’s Second Law through a torque balance on the free body diagram in Figure 2, the 

difference between the torque imposed on the turbine shaft by the string, Fs(D/2), and the 

frictional torque from the bearings, Tf, upon which the turbine spindle is mounted is given by 
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where I is the rotational inertia of the turbine spindle, Fs is the force of the sting arising from the 

weight of the fixed mass, m, and D is the diameter of the spindle around which the thread is 

wound. Finally, by applying a dynamic force balance to the falling mass alone (see Figure 2), the 

following expression results, 
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)                                                   (Eq. 3a) 

 

where g is the local gravitational acceleration. This expression can be solved for Fs: 
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)                                           (Eq. 3b) 

 

To obtain an experimental function for Tf, the friction torque from the bearings, the unloaded 

turbine was spun up to its maximum operational rotational velocity using compressed air. When 

 
Figure 2: Free body diagram for 

weight-string-turbine system showing 

acceleration directions, forces, and 

torques acting on components. 
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the turbine reached a steady state rate of rotation, the input gas was instantaneously shut off, and 

the rotational velocity of the turbine with respect to time was logged while the turbine spun down 

under friction primarily imposed by the bearings. A torque balance on the decelerating turbine 

spindle alone yields 

 

   ( )     ̈ ( )                                                        (Eq. 4) 

 

where  ̈ ( ) is determined from Equation 1. Substituting Eq. 4 into Eq. 2 and rearranging gives 
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                                                        (Eq. 5) 

 

and plugging the Fs expression of Equation 3b into Equation 5 results in an expression to 

determine I values exclusively from experimentally-measured inputs, 
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                                                   (Eq. 6) 

 

Now, to determine the value for I, the numerical values of the functions  ̈ ( ) and  ̈ ( ) were 

found at each time step: t1, t2, … tn. These values were plugged into Equation 6, which produced 

n-1 values for I where n is the total number of data points. The reported value for I is the average 

of all the discrete I values for each time step while the uncertainty in I is approximated as twice 

the standard deviation of all the data. 

 

Turbine Power Curves 

 

Turbine power output as a function of rotational velocity, the so-called turbine power curve, can 

be extracted experimentally by dynamic dynamometry. The turbine was run at 90 psi input 

pressure. Pressure upstream of the turbine was held constant using a regulator. 

 

Video capture of tachometer data was initiated with the turbine at rest. The turbine gas inlet was 

instantaneously opened, and the turbine was allowed to spin up until its rotational velocity 

reached steady state (we describe later how ‘steady state’ is formally defined). 

 

The following derivation leads to a turbine power curve expression. The turbine’s moment of 

inertia, I, is already known from the above-described analysis. The turbine’s power output, Pout, 

is 

 

         ̇ ( )    
  ̇ ( )

  
  ̇ ( )                                (Eq. 7) 

 

since the output shaft torque, Ts, is 

     
  ̇ ( )

  
                                                        (Eq. 8) 

 

To find an equation for Pout, a functional form is needed for  ̇ ( ). This function can be 

determined by inspection. An example of a raw  ̇ ( ) data set is given in Figure 3, and it is 



 

apparent from the non-zero initial slope that the function for  ̇ ( ) is a first order response (an 

asymptotic exponential) of the form 

 

 ̇ ( )   ̇    (   
 
 

 )                                           (Eq. 9) 

 

where  ̇    is the maximum 

turbine rotational velocity 

achieved at steady-state, and 

τ is a time constant 

characteristic of the system.  

 

To fit Equation 9 to the 

experimental data and 

obtain a useful function for 

 ̇ ( ), the time constant, τ, 

is treated as a variable 

parameter that is adjusted to 

achieve the best 

equation/experiment match. 

The fitting technique we 

used was minimization of 

the Standard Error of the 

Estimate (SEE). SEE is the 

sum of all the absolute 

differences between model 

and experiment at each 

discrete time step. As 

shown in Figure 3, 

exceptional experiment/model fit between real data and Equation 9 occurs when τ is correctly 

selected to minimize SEE. 

 

Identifying the correct value for τ enables useful data reduction by approximating the time at 

which turbine steady state rotation rate was achieved. All data collected after this time can be 

discarded as redundant. We used 4τ as the number of time constants required for the system to 

reach steady state. This decision is justified via the following analysis. At time = 0,  ̇ ( )   . 

For a functional form of  ̇ ( )   ̇   (   
 
 

 ), at time = 4τ,  ̇ (  )   ̇   (   
 
  

 )  

       ̇   . At time → ∞,  ̇ ( )   ̇   . Therefore, the percent error of  ̇ (  ) at time = 4τ 

relative to  ̇    at time → ∞ is given by the following calculation: 
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 ̇   
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 ̇   
                                          (Eq. 10) 

 

In other words, the percent error of  ̇ (  ) relative to  ̇    is less than 2%, which we deem to be 

an acceptable engineering approximation in characterizing this system. If additional error 

 
Figure 3: Rotational velocity versus time for a disk turbine spun up from rest 

at constant input gas pressure. The experimental data (blue diamonds) follow 

an asymptotic exponential, Equation 9, (red curve) where the system time 

constant, τ, must be selected to provide the best data/model fit. Data collected 

after time = 4τ are redundant and can be eliminated from the analysis. 
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reduction is desired, data can be retained for a duration of nτ where n is an arbitrary number 

selected based on the level of precision needed for calculations. 

 

Given the experimentally determined functional form of  ̇ ( ) in Equation 9, the turbine output 

power, Pout, can be expressed by carrying out the derivative implied in Equation 7 
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            (Eq. 11) 

 

which reduces through the following algebraic manipulations to a second-order polynomial 

equation  
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For any compressed air input pressure, experimental values for τ and  ̇    are determined using 

techniques described above. 

 

Discussion 

 

To evalaute how well the empirical power 

curve model of Equation 12d matches the 

turbine’s actual performance turbine 

power data are directly extracted via 

dynamic dynamomtry by using an 

approximate differential form of Equation 

7 

 

       
  ̇ ( )

  
  ̇ ( )       (Eq. 13) 

 

Here, the differential rotational velocity 

measured during turbine spin-up at each 

time step substitutes for the pure 

derivative allowing the turbine power 

output at each rotational velocity to be 

quantified. For 90 psi input pressure, the resulting comparision between the empirical power 

curve model of Equation 12d and the discrete turbine power veruses rotational velocity 

represented by Eqauation 13 is shown in Figure 4. 

 
Figure 4: Example theoretical versus experimental turbine 

power curves obtained from dynamic dynamometry. The 

theoretical model slightly under-predicts peak power and the 

rotational velocity to achieve it compared to a polynomial 

fitted to experimental data. 
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Of paramount importance to power system designers is the turbine’s peak power and the 

rotational velocity the turbine must run at to achieve this maximum performance point. For the 

theoretical power curve, the maximum power point is found by setting the derivative of the 

function to zero, 
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and maximum power is therefore 
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For the example case of 90 psi input pressure,  ̇                  . This measured result 

gives  ̇                          for Eq. 14b yielding                          from 

Eq. 15b for the theoretical power curve. By comparison, the curve fitted to the empirical data 

gives  ̇                          yielding                         . In other words, the 

theory under-predicts  ̇           by only 2.95% resulting in an underproduction of 

              by only 4.70%. The predicative power of the theoretical model to pinpoint the 

turbine’s maximum power point to better than 5% is an excellent and surprising result for such a 

simple analysis technique. 

 

In addition to comparing the maximum power indicated by the theoretical curve of Eq. 12d to the 

best-fit curve for all data, another metric to evaluate the predictive capacity of Eq. 12d is 

comparison to the actual maximum power directly measured via dynamic dynamometry. From 

experimental data,                          at  ̇                         . Thus, Eq. 

15b under-predicts maximum power by 17.5% and over-predicts the rotational velocity of the 

maximum power point by 2.58%. However, since direct measurement of maximum power and 

maximum power point are based on discretely sampled data, it is possible that closer 

theory/experimental agreement could be achieved if the data were sampled at a higher rate. 

 

Conclusions 

 

For Rankine power cycles, the need to tightly regulate working fluid phase through the turbine 

limits the power produced and overall cycle efficiency. While Rankine cycles will someday 

dominate spacecraft power generation for manned space missions, limitations on power plant 

efficiency and power imposed by need for single-phase through-turbine flow will hinder 

adoption of this technology to power in interplanetary spacecraft. Disk turbines have the 



 

potential for continuous operation while processing two-phase (vapor-liquid) working fluid and 

are therefore a desirable technology to anchor space-based Rankine power cycles. 

 

We describe a method called dynamic dynamometry to accurately measure and predict turbine 

mechanical power output using the rational inertia of the turbine’s spinning components and 

friction in its bearings as the load. Using turbine spin-up, steady-state, and spin-down data 

captured via an optical tachometer, we present a method to indirectly determine the turbine’s 

rotational inertia and predict its power curve. Comparing the resulting theoretical maximum 

power and rotational velocity for this point against a best fit curve for all experimental data 

yields excellent agreement. For the representative case of 90 psi turbine inlet pressure the 

maximum power is under-predicted by only 4.70% while the rotational velocity needed to 

operate at this point is under-predicted by only 2.95%. We conclude that the derived theoretical 

model is a reasonable tool to analyze and predict the actual performance of disk turbines. This 

tool will be used for future experimental and theoretical evaluations of disk turbines for space-

based power generation using Rankine cycles. 
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