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By using a transformation from phase-space variables to a set of 
orthogonal Hermite-Legendre polynomials, the dynamics of one-
dimensional self-gravitating systems has been reduced to a linear set of 
equations. This transformation changes the long-range forces into local 
interactions in the new problem.  This makes it possible to determine the 
steady-state solutions by projecting the initial conditions into the time-
independent solutions. 

1. Introduction	  	  
Astrophysicists have made significant progress in forming a consistent picture of how large-scale 
structures (namely galaxies and galaxy clusters) form through the use of N-body computer 
simulations.  In fact simulations are the main tool for determining the role dark matter halos play 
in structure and evolution of galaxies.  These models vary in their level of detail – some include 
only gravitational interactions, while others include additional gas dynamics and stellar 
evolution.  Although these simulations reproduce observed self-gravitating objects, their 
behavior is not fully characterized and the driving mechanisms in their evolution are not fully 
understood.  Some questions that still need to be answered are: What determines the equilibrium 
state of such a system? How does the final state depend on the initial conditions? What features 
are universal?  What role does entropy play in the relaxation process?  

Although realistic models do enable us to reproduce observed structures, their complexity makes 
analysis very difficult and mostly empirical in nature.  For this reason, my UW-L colleague Eric 
Barnes, and I have been studying one-dimensional collisionless systems.  These systems relax to 
quasi-stationary equilibria via self-gravity in a very similar fashion to 3-d systems, but are much 
easier to analyze.  In particular, their phase-space distributions can be linearized and expanded in 
terms of orthogonal polynomials. The equations of motion of the expansion coefficients can be 
written as a sparse linear system.  Diagonalization of the equations of motion yields the spectrum 
and modes of the dynamics as well as the time-independent solutions.  

This approach allows us to predict the final equilibrium state from the initial conditions. But 
more than that, it gives a very illuminating picture of the phase-space motion of the system in 
terms of the evolution of the expansion coefficients whose equations of motion are local in that 
couplings are only between nearest-neighboring coefficients.  This gives a compelling picture of 
conserved quantities like energy and fine-grained entropy that evolve via continuity-type 
equations in coefficient space. Furthermore, higher-order expansions should yield information 
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about correlations between different modes, such as how they develop and how they relate to the 
energy and entropy of the system. Taken together with N-body simulations this investigation 
should yield a deeper understanding of the role of dark matter halos in galaxy formation. 

2. Background	  
There is a broad consensus among astrophysicists and cosmologists that visible matter makes up 
only 5% of the mass-energy of the universe. Another 25% is thought to be weakly-interacting 
dark matter (Spergel et al., 2003), and the remaining 70% is hypothesized to be dark energy. The 
picture has been inferred from the velocity curves of star orbits within galaxies (Rubin & Ford,  

1970), the motion of galaxies within clusters (Zwicky, 1937), gravitational lensing (Clowe et al., 
2006), and rate of expansion of the universe.  

In particular studies of individual galaxies indicate that the observed velocity curves are due to 
halos of dark matter that surrounds galaxies.  N-body simulations of galaxies can involve billions 
of point masses interacting via gravity, sometimes with additional gas physics and stellar 
evolution.   These studies have been successful in reproducing typically observed galactic 
structures (density profiles, velocity curves, etc.) from “cosmological” initial conditions,  i.e.  
nearly uniform, expanding mass distributions (Navarro et al., 1997, 2004).   

Dark matter interacts via gravity but its motion is assumed to be collisionless.  A natural question 
that arises is:  how does a dark matter halo relax?  Computer simulations indicate that relaxation 
is generally incomplete, that different initial conditions lead to different equilibria.  In fact, for 3-
d systems there is no self-gravitating thermal equilibrium with a uniform temperature (Lynden-
Bell 1967), and in general systems partially relax to an equilibrium state belonging to continuum 
of  quasi-stationary states (Hohl & Felix, 1967). 

Numerous attempts have been made to understand the details of collisionless relaxation 
processes (Taylor & Navarro, 2001;  Hansen & Moore, 2006;  Lithwick & Dalal, 2011).  
Although they have added new insights, none of them have provided a comprehensive physical 
picture.  Progress in this direction is the motivation of this project. 

Instead of tackling the full 3-d problem head-on, we have chosen to study 1-d self-gravitating 
systems.  These systems are a lot easier to analyze and simulate yet they possesses many of the 
essential features of interest, like long-range forces, self-gravitation, and collisionless relaxation.  
On the other hand the 1-d problem lacks 3-d properties like angular momentum and tidal forces.   

The collisionless phase-space (x v) evolution of 1-d systems is described by the one-dimensional 
Vlasov equation (Alard and Colombi,  2005 and references therein) 
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where ),( yxf  is the phase space distribution function and )(xa  is the acceleration due to self-
gravitation.  For 1-d systems the gravitational force is range-independent so the acceleration is 
given simply by )()( <> −−= MMgxa , where )(<>M  is the total mass to the right (left) of x, and 

g is the 1-d gravitational constant. 

Studies of the 1-d model have a long history (Camm, 1950).  These studies focus usually focus 
on either cosmological problems (instabilities of uniform density) (e.g. Miller et al., 2007), or 
isolated self-gravitating systems (e.g. Schulz, 2013).  Most of the analyses of isolated systems 
has been performed using action-angle variables (E,t) from which a general solution can be 
obtained, at least of the linearized Vlasov equation (e.g. Barre et al., 2011).  But the calculations 
are rather cumbersome and opaque, and physical quantities are not easily analyzed in this 
approach. 

We have found another way to analyze the linearized Vlasov equation, by considering 
perturbations of thermal equilibrium, i.e. fff δ+= 0 . In contrast to the 3-d case, the 1-d case 
possesses a bound state of thermal equilibrium that maximizes entropy  
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where σ is the velocity dispersion and A is a normalization constant.  After linearizing the 
Vlasov equation about f0, one can expand the perturbations in terms of Hermite (in velocity) and 
Legendre polynomials (in position) in the form 
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where the polynomials the mnG are a complete set of orthogonal normalized polynomials, 
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(x and v have been rescaled), and the cmn(t) are time-dependent expansion coefficients. The 
equations of motion of the coefficients are then given by the linear system 
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where the couplings ji
nm

L  , determined from Eq.1  are only between neighboring coefficients (i.e. 

1,1, ±±= nmji ),  and are time-independent. Thus, the original phase space (x,v) evolution is 
transformed into an evolution of coefficients on the positive (m,n) quarter plane (Fig. 1). The 



 

initial value is solved by projecting the initial perturbation onto the orthonormal polynomials and 
evolving the system according to Eq.5.  These equations define a very rich model whose physical 
properties are easy to investigate.  We have been able to derive 1st- and 2nd –order expressions 
for kinetic and potential energy as well as fine- and coarse-grained entropy. 

Alternatively, the system can also be analyzed as an eigenvalue problem   

     kkk LCCi =ω       Eq.6 

with a spectrum of real frequencies }{ kω and complete set of eigenvectors kC . This approach 
reveals a 0=ω subspace of eigenvectors corresponding to the time-independent solutions of 
Eq.5, (and hence of Eq.1). These time-independent solutions form the basis of equilibria states 
that result from relaxation. In this picture, relaxation is viewed as a de-phasing of all the 0≠ω
components in the initial conditions.   

Unfortunately, truncation of the series to some (mmax, nmax)=(M, N) domain is a non-trivial 
problem, because reflections occur at the truncation boundaries. We have tried several 
approaches, including fixed boundaries, absorbing boundaries, and or small amounts of damping, 
but none are completely satisfactory and their impact on the time-dependent solutions is still not 
fully understood.  Fortunately, the truncation problem can be side-stepped by considering the 
time-independent solutions. 

 

 
Figure 1 Comparison of evolution in phase space (x,p) and coefficient space 
(m,n). 

3. Time-‐independent	  solutions	  
The focus of this work was the subspace of time-independent solutions, which allows us to 
predict the final state from the initial state, but also allows us to study the redistribution of energy 
and entropy resulting from relaxation in a very precise way. 



 

 
The time-independent solutions can be obtained in a variety of ways. One can simply diagonalize 
Eq.6  numerically to obtain approximate solutions, but this approach suffers from the truncation 

effects at the m=M and n=N boundaries. Alternatively one can solve Eq.5  with 0=mndt
d c

directly, and this results in recursion relations for the time-independent solutions.  Since there are 
an infinite number of degenerate solutions spanning the subspace, they have to be orthogonalized 
via a Gram-Schmidt procedure (Fig. 2). The solutions naturally truncate at some mmax  which 
serves as an index. There is an additional complication in that L is not Hermitian, but this has 
been overcome with the use of left-and right-sided eigenvectors. 
 
One can also obtain exact solutions by expanding the velocity in a Hermite series and solving the 
resulting (coupled) differential equations for fδ  directly. This approach is cumbersome but 
provides a benchmark for comparison with approximate solutions.  
 
 

 
 
Figure 2.  Density profiles of orthogonalized time-independent solutions. 
 

Once a suitable set of orthonormal time-independent solutions has been obtained, the final states 
will be compared with 1-d N-body solutions for a variety of initial conditions (Fig. 3).  This 
process should allow us to identify different classes of initial conditions according to what final 
states they project into.  In particular, it will be interesting to see how these final states relate to 
the family of distribution functions obtained by maximizing coarse-grained entropy using 
Lynden-Bell statistics (Lynden-Bell, 1967), thus yielding a very stringent test of their 
applicability. 

 



 

 

Figure 3.  Example of initial conditions (left)  and corresponding steady- state solution (right). 

 

4. Summary 

To summarize, the goals of this work were: to perform a complete analysis of the time-
independent subspace of solutions of isolated 1-d self-gravitating systems that have been slightly 
perturbed from the state of maximum entropy,  f0 . This involved: (1) obtaining these solutions in 
various representations (as eigenvectors, recursive solutions, and exact solutions of coupled 
differential equations), (2) using these solutions to predict the equilibrium state for different 
initial conditions, (3) analyzing and interpreting the redistribution of energy and fine-grained 
entropy in the evolution of these systems from their initial conditions,  (4) extending the 
calculations to 2nd-order to study the behavior of correlations, and (5) performing N-body 
simulations to verify our predictions and to determine their range of validity. 
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