
Can Dark Matter Halos Change Shape? 
Examining the Adams Instability in Triaxial Systems 

 
Evan Dowling, Dr. Eric Barnes 

 
Department of Physics 

University of Wisconsin-La Crosse 
 

Abstract: A recently discovered instability causes non-spherical orbits within dark matter halos 
to exponentially diverge into more spherical orbits.  The instability was studied in limited 
regimes within the Adams et al. (2007) work.  This project has replicated and extended the ideas 
to a static potential system that is accurate to all distances away from the potential’s center as 
well as found an easy visualization for the arising instability.  A better understanding of dark 
matter’s behavior will help explain dark matter’s halo structure and mass distribution that 
surrounds galaxies. 

 
Introduction 
 
Over the last forty years, substantial evidence has been found that suggests the majority of the 
mass within the universe is not stored within planets, stars, and intergalactic dust, but rather is 
hidden in the form of mysterious dark matter.  This material is appropriately named, due to its 
peculiar property of not interacting with light. In fact, in the simplest current picture of dark 
matter behavior, gravity is the only force dark matter feels.  Galaxies, like the one we inhabit, 
are hypothesized to be enveloped in dark matter halos whose mass can outnumber the residing 
stars 10 to 100 times (e.g., Salpeter 1978; Rubin 1979; Sancisi & Allen 1979).  So, why did 
astrophysicists and astronomers come to the conclusion that there needs to be so much “dark” 
mass? 
 
It turns out the answer doesn’t lie in just one area, but several.  Once astronomers looked up to 
the night sky and painstakingly measured the velocities of the constituent stars within 
observable galaxies, they noticed speeds larger than expected.  The amount of visible mass 
could not account for the gravitational force needed to keep the galaxies bound together (e.g., 
Rubin & Ford 1970).  Similarly, large amounts of mass beyond that accounted for by visible 
matter is needed to account for a phenomenon called gravitational lensing.  Due to mass’s 
ability to curve space-time, light follows curved paths near massive objects.  This “bending” is 
analogous to the impact of an optical lens on a beam of light.  To match astronomers’ lensing 
observations, more matter than can be directly seen is needed (Schechter & Wambsganss 2004; 
Ferreras et al. 2005).  Finally, analyses of recent observations of the cosmic background 
radiation coincide with predictions made if the total mass in the universe far exceeds the mass 
attributed to protons, neutrons, and electrons (Spergel et al. 2007). 
 
In an effort to better understand a substance that seems to prefer being hidden, astrophysicists 
have relied on computer simulations. Tracking orbits of particles that represent dark matter 
through collisionless systems is intended to cut through the fog and discover the true behavior of 
dark matter and the galaxies it underlies. Extensive research has been done laying the 
foundation for computational methods to analyze orbital systems (e.g. deZeeuw & Merritt 1983; 
Statler 1987; Holley-Bockelmann et al. 2001, 2002; Poon & Merritt 2002; Terzic & Sprague 
2007). 



 
Even the earliest studies of orbits found hints of instabilities (Henon 1973). One of the most 
widely studied of these instabilities has become known as the radial orbit instability (Merritt & 
Aguilar 1985; Barnes et al. 1986; Palmer & Papaloizou et al. 1987).  A short summary of this 
type of instability starts with a spherical system, hosting particles on radial orbits (ones that 
would pass through the center of the sphere).  The instability grows as neighboring orbits tend to 
become aligned along a direction that has slightly more particles than others.  In the end, a 
spherical system can be transformed into an ellipsoidal system. 
 
The instability we are interested in studying is essentially the inverse of the radial orbit 
instability.  Instead of facilitating the change from spherical to ellipsoidal, the Adams instability 
acts to remove orbits that support non-spherical shapes.  This instability was first identified 
using static (unchanging) gravitational fields produced by simple, analytically-describable mass 
density distributions.  We use the term “simple” in the sense that the mathematical descriptions 
were abridged from an assumption of nearness to the potential’s center. Particles that are 
perturbed slightly from certain orbits exponentially diverge from paths taken by non-perturbed 
particles.  With orbits undergoing the instability being deflected in random directions, one 
would expect the host system to become more spherical or, at least, have a limited range of non-
sphericity.   
 
During the award period, we explored and expanded on the results on orbital instabilities 
expressed in Adams et al. (2007).  The first step in this research project was to duplicate the 
results by converting relevant mathematical representations into computer code and comparing 
simulations given appropriate initial conditions.  After this initial step was completed, we 
wanted to extend the accuracy of the instability to the entire range of the potential. Since the 
analytic forces depended on the assumption of nearness to the center it caused the equations to 
become increasingly inaccurate as the position grew away from the center. In our work we 
investigated different methods in order to accurately account for the forces and potential at all 
distances away from the center.   
 
Simulation and Results 
 
This work was completed within the University of Wisconsin-La Crosse physics computer lab 
and was entirely based on computational methods and analyses.  Our computational 
investigation can be broken into two main parts.   
 
Part one involved using computer simulations to replicate the work that first identified the 
orbital instability in non-spherical systems.  This was done by transcribing the mathematical 
expressions for gravitational forces and potential into computer code; in our investigation the 
programming language was chosen to be FORTRAN. In order to best conserve energy for 
orbital integration an adaptive-timestep, fifth-order Runge-Kutta scheme was used. This 
numerical method allowed us to conserve orbit energy to a specified tolerance (ΔE/E < 10-5). 
With this complete we built analysis code in a second language, IDL, to read the output and 
display the data in graphs of position vs. time or surface of sections. Surface of section graphs 
are plots of position vs. velocity with various sets of orbits that share a common energy.  This is 
done by adjusting a particles initial velocity (kinetic energy) in relation to its distance from the 



potentials center (potential energy) to guarantee that all particles start with identical total 
energies.  To signal the onset of instabilities, the graphs show how unstable orbits lead to 
exponentially increasing position vs. time curves (Figs. 2 & 5) and appear as swarms of 
unconnected points (Fig. 6) within surface of section plots.  
 
Replication of the results from Adams et al. 2007 and confirmation of the instability shortly 
followed.  

  

 
Looking at the left portion of Fig. 1 from Adams et al. and the bottom left graph of Fig. 2 the 
overall orbital shape within the x, z plane is nearly identical.  More importantly the logarithmic 
plots in both graphs show exponential growth in the y-position values meaning an instability, 
caused from the initial state, was present.   
 
In order to better understand the instability, we 
sought for an easy visualization that might give 
grounds for its existence.  When considering the 
limiting case of a particle traveling along one axis 
towards the center, we noticed that there was a 
discontinuous force behavior as it crosses the 
origin, like what is shown in Fig. 3. Once a particle 
crosses the origin it experiences a rapid, 
instantaneous force change. This “jerk” appears to 
assist in the instability of non-spherical orbits. 
 
Part two involved looking at a new system that allowed us to study the full potential accurately.  
This meant creating a new method to determine the forces and potential in contrast to the 
analytical descriptions used in part one. We went with numerically integrating the true 
expressions for potential and forces on a 3D grid. During an orbit, spline interpolation, another 
numerical method, was used to determine force values between grid points based on the 
perceived behavior of the grid. Using the same orbital integration Runge-Kutta method allowed 
for an acceptable energy conservation (ΔE/E < 10-4).  Energy conservation was calculated by 

Log[y(t)] vs. t 

Figure 1. Graphs from Adams et al. Left: Orbit 
in principal x, z plane. Right: Development of 
instability with initial y = 10-8 (scaled distance).  

Figure 2. Orbit with nearly identical initial 
conditions as Fig 1. Panels show orbit shape in 
various axis planes. Top right: log plot showing 
exponential growth. 

Figure 3. Left: x-force behavior with non-zero y 
and z position. Right: x-force behavior with y and 
z approximately zero with respect to x. 

Analytical 



determining the spread in the energy values and 
dividing by the average energy magnitude.  A low 
ΔE/E number signifies nearly constant energy values 
and energy conservation.  The new grid-based 
description of the potential eliminated the error in 
values of force and potential since it doesn’t rely on 
the approximation of nearness to the center. This is 
important since the grid-based potential deviates 
significantly from the analytical potential (correct 
only near the center) for larger radial distances, seen 
in figure 4.     
 
Further examination of this new grid-based potential 

has produced unstable orbits similar to those in Fig. 2 (Fig. 5) as well as evidence of the 
instability within a broader study of orbits seen in the inner fuzzy regions of the surfaces of 
section plot (Fig. 6).  

 
For the sets of orbits within Fig. 6 the instability exists for x-position values as high as 0.6. The 
value 0.6 is a normalized distance of galactic dimension used to make the position variables 
dimensionless.  When looking at Fig. 4 this instability exists even when the grid-based potential 
vastly differs from the analytical potential used in part one. 
 
Conclusion 
 
Through our investigation on the Adams instability we have verified past investigations as well 
as examined the instability in new ways.  From reworking the initial investigation on the Adams 
instability, we developed the necessary analysis techniques to tackle new approaches on where 
the old investigation may be lacking.  Also, by validating the instability with the analytical 
expressions we gained insight into an easy visualization on the source of the instability.  From 
reforming the potential and forces into a 3D grid based on their true values we have overcome 
the inaccuracies that effected the initial investigation. This new approach also confirmed that 
instabilities exists throughout the entire potential and not just the inner regions where the 
previously studied analytical approximations were valid.  

Figure 4. Differences between the analytical- 
and grid-based potentials. 

Figure 5. Top right: log plot showing 
exponential growth. Other plots show orbit 
shape in various axis planes. 

Figure 6. Surfaces of section of orbits with small 
initial y-position values. 



Future Work 
 
Our eventual goal is to search for evidence of the instability in N-body simulations, where there 
is no analytic description of the gravitational potential.  With either positive or negative 
evidence, this investigation should merit publication in a peer-reviewed journal.  These 
simulations involve many (N) point particles evolving through time under their mutual 
gravitational attractions.  Such a system has a “bumpy” potential due to discreteness effects – 
particles are not smoothly distributed about every location in space.  Adjusting for cosmological 
conditions, such as an expanding universe, we have begun creating simulations that will provide 
a very different testbed for comparison to the static potentials. 
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